Corbett Bennett, Ben Ouellette, Tamina K Ramirez, Alex Cahoon, Hannah Cabasco, Hannah Belski, Ryan Gillis, Conor Grasso, Robert Howard, Tye Johnson, Henry Loeffler, Heston Smith, David Sullivan, Allison Williford, Shiella Caldejon, Severine Durand, Samuel D Gale, Alan Guthrie, Vivian Ha, Warren Han, Ben Hardcastle, Ethan McBride, Chris Mochizuki, Arjun Sridhar, Lucas Suarez, Jackie Swapp, Josh Wilkes, Colin Farrell, Peter Groblewski, Shawn Olsen
{"title":"SHIELD:颅骨状半球植入物,可在小鼠大脑中建立大规模电生理数据集","authors":"Corbett Bennett, Ben Ouellette, Tamina K Ramirez, Alex Cahoon, Hannah Cabasco, Hannah Belski, Ryan Gillis, Conor Grasso, Robert Howard, Tye Johnson, Henry Loeffler, Heston Smith, David Sullivan, Allison Williford, Shiella Caldejon, Severine Durand, Samuel D Gale, Alan Guthrie, Vivian Ha, Warren Han, Ben Hardcastle, Ethan McBride, Chris Mochizuki, Arjun Sridhar, Lucas Suarez, Jackie Swapp, Josh Wilkes, Colin Farrell, Peter Groblewski, Shawn Olsen","doi":"10.1101/2023.11.12.566771","DOIUrl":null,"url":null,"abstract":"To understand the neural basis of behavior, it is essential to measure spiking dynamics across many interacting brain regions. While new technology, such as Neuropixels probes, facilitates multi-regional recordings, significant surgical and procedural hurdles remain for these experiments to achieve their full potential. Here, we describe a novel 3D-printed cranial implant for electrophysiological recordings from distributed areas of the mouse brain. The skull-shaped implant is designed with customizable insertion holes, allowing targeting of dozens of cortical and subcortical structures in single mice. We demonstrate the procedure's high success rate, implant biocompatibility, lack of adverse effects on behavior training, compatibility with optical imaging and optogenetics, and repeated high-quality Neuropixels recordings over multiple days. To showcase the scientific utility of this new methodology, we use multi-probe recordings to reveal how alpha rhythms organize spiking activity across visual and sensorimotor networks. Overall, this methodology enables powerful large-scale electrophysiological measurements for the study of distributed computation in the mouse brain.","PeriodicalId":486943,"journal":{"name":"bioRxiv (Cold Spring Harbor Laboratory)","volume":"44 23","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SHIELD: Skull-shaped hemispheric implants enabling large-scale-electrophysiology datasets in the mouse brain\",\"authors\":\"Corbett Bennett, Ben Ouellette, Tamina K Ramirez, Alex Cahoon, Hannah Cabasco, Hannah Belski, Ryan Gillis, Conor Grasso, Robert Howard, Tye Johnson, Henry Loeffler, Heston Smith, David Sullivan, Allison Williford, Shiella Caldejon, Severine Durand, Samuel D Gale, Alan Guthrie, Vivian Ha, Warren Han, Ben Hardcastle, Ethan McBride, Chris Mochizuki, Arjun Sridhar, Lucas Suarez, Jackie Swapp, Josh Wilkes, Colin Farrell, Peter Groblewski, Shawn Olsen\",\"doi\":\"10.1101/2023.11.12.566771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To understand the neural basis of behavior, it is essential to measure spiking dynamics across many interacting brain regions. While new technology, such as Neuropixels probes, facilitates multi-regional recordings, significant surgical and procedural hurdles remain for these experiments to achieve their full potential. Here, we describe a novel 3D-printed cranial implant for electrophysiological recordings from distributed areas of the mouse brain. The skull-shaped implant is designed with customizable insertion holes, allowing targeting of dozens of cortical and subcortical structures in single mice. We demonstrate the procedure's high success rate, implant biocompatibility, lack of adverse effects on behavior training, compatibility with optical imaging and optogenetics, and repeated high-quality Neuropixels recordings over multiple days. To showcase the scientific utility of this new methodology, we use multi-probe recordings to reveal how alpha rhythms organize spiking activity across visual and sensorimotor networks. Overall, this methodology enables powerful large-scale electrophysiological measurements for the study of distributed computation in the mouse brain.\",\"PeriodicalId\":486943,\"journal\":{\"name\":\"bioRxiv (Cold Spring Harbor Laboratory)\",\"volume\":\"44 23\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv (Cold Spring Harbor Laboratory)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.11.12.566771\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv (Cold Spring Harbor Laboratory)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.11.12.566771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SHIELD: Skull-shaped hemispheric implants enabling large-scale-electrophysiology datasets in the mouse brain
To understand the neural basis of behavior, it is essential to measure spiking dynamics across many interacting brain regions. While new technology, such as Neuropixels probes, facilitates multi-regional recordings, significant surgical and procedural hurdles remain for these experiments to achieve their full potential. Here, we describe a novel 3D-printed cranial implant for electrophysiological recordings from distributed areas of the mouse brain. The skull-shaped implant is designed with customizable insertion holes, allowing targeting of dozens of cortical and subcortical structures in single mice. We demonstrate the procedure's high success rate, implant biocompatibility, lack of adverse effects on behavior training, compatibility with optical imaging and optogenetics, and repeated high-quality Neuropixels recordings over multiple days. To showcase the scientific utility of this new methodology, we use multi-probe recordings to reveal how alpha rhythms organize spiking activity across visual and sensorimotor networks. Overall, this methodology enables powerful large-scale electrophysiological measurements for the study of distributed computation in the mouse brain.