{"title":"树突状细胞靶向聚合纳米颗粒的合成用于mRNA疫苗的选择性递送以引发增强的免疫反应","authors":"Chi-Huey Wong","doi":"10.1101/2023.11.13.566827","DOIUrl":null,"url":null,"abstract":"ABSTRACT: Recent development of SARS-CoV-2 spike mRNA vaccines to control the pandemic is a breakthrough in the field of vaccine development. mRNA vaccines are generally formulated with lipid nanoparticles (LNPs) which are composed of several lipids with specific ratios; however, they generally lack selective delivery. To develop a simpler method selective delivery of mRNA, we reported here the synthesis of biodegradable copolymers decorated with guanidine and zwitterionic groups and an aryl-trimannoside ligand as polymeric nanoparticles (PNPs) for encapsulation and selective delivery of an mRNA to dendritic cells (DCs). A representative DC-targeted SARS-CoV-2 spike mRNA-PNP vaccine was shown to elicit a stronger protective immune response in mice as compared to the mRNA-LNP and mRNA-PNP vaccines without the selective delivery design. It is anticipated that this technology will be generally applicable to development of DC-targeted mRNA vaccines with enhanced immune response.","PeriodicalId":486943,"journal":{"name":"bioRxiv (Cold Spring Harbor Laboratory)","volume":"46 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of Dendritic Cell-Targeted Polymeric Nanoparticles for Selective Delivery of mRNA Vaccines to Elicit Enhanced Immune Responses\",\"authors\":\"Chi-Huey Wong\",\"doi\":\"10.1101/2023.11.13.566827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT: Recent development of SARS-CoV-2 spike mRNA vaccines to control the pandemic is a breakthrough in the field of vaccine development. mRNA vaccines are generally formulated with lipid nanoparticles (LNPs) which are composed of several lipids with specific ratios; however, they generally lack selective delivery. To develop a simpler method selective delivery of mRNA, we reported here the synthesis of biodegradable copolymers decorated with guanidine and zwitterionic groups and an aryl-trimannoside ligand as polymeric nanoparticles (PNPs) for encapsulation and selective delivery of an mRNA to dendritic cells (DCs). A representative DC-targeted SARS-CoV-2 spike mRNA-PNP vaccine was shown to elicit a stronger protective immune response in mice as compared to the mRNA-LNP and mRNA-PNP vaccines without the selective delivery design. It is anticipated that this technology will be generally applicable to development of DC-targeted mRNA vaccines with enhanced immune response.\",\"PeriodicalId\":486943,\"journal\":{\"name\":\"bioRxiv (Cold Spring Harbor Laboratory)\",\"volume\":\"46 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv (Cold Spring Harbor Laboratory)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.11.13.566827\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv (Cold Spring Harbor Laboratory)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.11.13.566827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesis of Dendritic Cell-Targeted Polymeric Nanoparticles for Selective Delivery of mRNA Vaccines to Elicit Enhanced Immune Responses
ABSTRACT: Recent development of SARS-CoV-2 spike mRNA vaccines to control the pandemic is a breakthrough in the field of vaccine development. mRNA vaccines are generally formulated with lipid nanoparticles (LNPs) which are composed of several lipids with specific ratios; however, they generally lack selective delivery. To develop a simpler method selective delivery of mRNA, we reported here the synthesis of biodegradable copolymers decorated with guanidine and zwitterionic groups and an aryl-trimannoside ligand as polymeric nanoparticles (PNPs) for encapsulation and selective delivery of an mRNA to dendritic cells (DCs). A representative DC-targeted SARS-CoV-2 spike mRNA-PNP vaccine was shown to elicit a stronger protective immune response in mice as compared to the mRNA-LNP and mRNA-PNP vaccines without the selective delivery design. It is anticipated that this technology will be generally applicable to development of DC-targeted mRNA vaccines with enhanced immune response.