Elena Silva, Véronique Ferchaud-Roucher, Anita Kramer, Lana Madi, Priyadarshini Pantham, Stephanie Chassen, Thomas Jansson, Theresa L. Powell
{"title":"油酸刺激原代人类滋养层细胞摄取氨基酸是由磷脂酸和 mTOR 信号传导介导的","authors":"Elena Silva, Véronique Ferchaud-Roucher, Anita Kramer, Lana Madi, Priyadarshini Pantham, Stephanie Chassen, Thomas Jansson, Theresa L. Powell","doi":"10.1096/fba.2023-00113","DOIUrl":null,"url":null,"abstract":"<p>Normal fetal development is critically dependent on optimal nutrient supply by the placenta, and placental amino acid transport has been demonstrated to be positively associated with fetal growth. Mechanistic target of rapamycin (mTOR) is a positive regulator of placental amino acid transporters, such as System A. Oleic acid (OA) has been previously shown to have a stimulatory role on placental mTOR signaling and System A amino acid uptake in primary human trophoblast (PHT) cells. We investigated the mechanistic link between OA and System A activity in PHT. We found that inhibition of mTOR complex 1 or 2, using small interfering RNA to knock down raptor or rictor, prevented OA-stimulated System A amino acid transport indicating the interaction of OA with mTOR. Phosphatidic acid (PA) is a key intermediary for phospholipid biosynthesis and a known regulator of the mTOR pathway; however, phospholipid biosynthetic pathways have not been extensively studied in placenta. We identified placental isoforms of acyl transferase enzymes involved in de novo phospholipid synthesis. Silencing of 1-acylglycerol-3-phosphate-O-acyltransferase-4, an enzyme in this pathway, prevented OA mediated stimulation of mTOR and System A amino acid transport. These data indicate that OA stimulates mTOR and amino acid transport in PHT cells mediated through de novo synthesis of PA. We speculate that fatty acids in the maternal circulation, such as OA, regulate placental functions critical for fetal growth by interaction with mTOR and that late pregnancy hyperlipidemia may be critical for increasing nutrient transfer to the fetus.</p>","PeriodicalId":12093,"journal":{"name":"FASEB bioAdvances","volume":"6 1","pages":"1-11"},"PeriodicalIF":2.5000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1096/fba.2023-00113","citationCount":"0","resultStr":"{\"title\":\"Oleic acid stimulation of amino acid uptake in primary human trophoblast cells is mediated by phosphatidic acid and mTOR signaling\",\"authors\":\"Elena Silva, Véronique Ferchaud-Roucher, Anita Kramer, Lana Madi, Priyadarshini Pantham, Stephanie Chassen, Thomas Jansson, Theresa L. Powell\",\"doi\":\"10.1096/fba.2023-00113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Normal fetal development is critically dependent on optimal nutrient supply by the placenta, and placental amino acid transport has been demonstrated to be positively associated with fetal growth. Mechanistic target of rapamycin (mTOR) is a positive regulator of placental amino acid transporters, such as System A. Oleic acid (OA) has been previously shown to have a stimulatory role on placental mTOR signaling and System A amino acid uptake in primary human trophoblast (PHT) cells. We investigated the mechanistic link between OA and System A activity in PHT. We found that inhibition of mTOR complex 1 or 2, using small interfering RNA to knock down raptor or rictor, prevented OA-stimulated System A amino acid transport indicating the interaction of OA with mTOR. Phosphatidic acid (PA) is a key intermediary for phospholipid biosynthesis and a known regulator of the mTOR pathway; however, phospholipid biosynthetic pathways have not been extensively studied in placenta. We identified placental isoforms of acyl transferase enzymes involved in de novo phospholipid synthesis. Silencing of 1-acylglycerol-3-phosphate-O-acyltransferase-4, an enzyme in this pathway, prevented OA mediated stimulation of mTOR and System A amino acid transport. These data indicate that OA stimulates mTOR and amino acid transport in PHT cells mediated through de novo synthesis of PA. We speculate that fatty acids in the maternal circulation, such as OA, regulate placental functions critical for fetal growth by interaction with mTOR and that late pregnancy hyperlipidemia may be critical for increasing nutrient transfer to the fetus.</p>\",\"PeriodicalId\":12093,\"journal\":{\"name\":\"FASEB bioAdvances\",\"volume\":\"6 1\",\"pages\":\"1-11\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1096/fba.2023-00113\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FASEB bioAdvances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1096/fba.2023-00113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FASEB bioAdvances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1096/fba.2023-00113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
胎儿的正常发育关键取决于胎盘的最佳营养供应,而胎盘氨基酸转运已被证明与胎儿的生长有积极的关系。雷帕霉素机制靶标(mTOR)是胎盘氨基酸转运体(如 A 系统)的正向调节因子。油酸(OA)先前已被证明对胎盘 mTOR 信号传导和原代人类滋养层细胞(PHT)的 A 系统氨基酸摄取有刺激作用。我们研究了 OA 与 PHT 中 A 系统活性之间的机理联系。我们发现,通过使用小干扰 RNA 敲除 raptor 或 rictor 来抑制 mTOR 复合物 1 或 2,可以阻止 OA 刺激的 System A 氨基酸转运,这表明 OA 与 mTOR 之间存在相互作用。磷脂酸(PA)是磷脂生物合成的关键中间体,也是mTOR通路的已知调节因子;然而,磷脂生物合成通路在胎盘中尚未得到广泛研究。我们发现了参与磷脂从头合成的胎盘酰基转移酶同工酶。沉默该途径中的一种酶--1-酰基甘油-3-磷酸-O-酰基转移酶-4,可阻止 OA 介导的 mTOR 刺激和 A 系统氨基酸转运。这些数据表明,OA 是通过 PA 的从头合成来刺激 PHT 细胞中的 mTOR 和氨基酸转运的。我们推测,母体循环中的脂肪酸(如 OA)通过与 mTOR 相互作用来调节对胎儿生长至关重要的胎盘功能,而妊娠晚期的高脂血症可能对增加胎儿的营养传输至关重要。
Oleic acid stimulation of amino acid uptake in primary human trophoblast cells is mediated by phosphatidic acid and mTOR signaling
Normal fetal development is critically dependent on optimal nutrient supply by the placenta, and placental amino acid transport has been demonstrated to be positively associated with fetal growth. Mechanistic target of rapamycin (mTOR) is a positive regulator of placental amino acid transporters, such as System A. Oleic acid (OA) has been previously shown to have a stimulatory role on placental mTOR signaling and System A amino acid uptake in primary human trophoblast (PHT) cells. We investigated the mechanistic link between OA and System A activity in PHT. We found that inhibition of mTOR complex 1 or 2, using small interfering RNA to knock down raptor or rictor, prevented OA-stimulated System A amino acid transport indicating the interaction of OA with mTOR. Phosphatidic acid (PA) is a key intermediary for phospholipid biosynthesis and a known regulator of the mTOR pathway; however, phospholipid biosynthetic pathways have not been extensively studied in placenta. We identified placental isoforms of acyl transferase enzymes involved in de novo phospholipid synthesis. Silencing of 1-acylglycerol-3-phosphate-O-acyltransferase-4, an enzyme in this pathway, prevented OA mediated stimulation of mTOR and System A amino acid transport. These data indicate that OA stimulates mTOR and amino acid transport in PHT cells mediated through de novo synthesis of PA. We speculate that fatty acids in the maternal circulation, such as OA, regulate placental functions critical for fetal growth by interaction with mTOR and that late pregnancy hyperlipidemia may be critical for increasing nutrient transfer to the fetus.