Dominique Gordy, Theresa Swayne, Gregory J Berry, Tiffany A. Thomas, Krystalyn E Hudson, Elizabeth F Stone
{"title":"一种新型小鼠血小板输注模型的表征","authors":"Dominique Gordy, Theresa Swayne, Gregory J Berry, Tiffany A. Thomas, Krystalyn E Hudson, Elizabeth F Stone","doi":"10.1101/2023.11.10.566577","DOIUrl":null,"url":null,"abstract":"BACKGROUND: Platelet transfusions are increasing with advances in medical care. Based on FDA criteria, platelet units are assessed by in vitro measures; however, it is not known how platelet processing and storage duration affect function in vivo. To address this, we developed a novel platelet transfusion model that meets FDA criteria adapted to mice, and transfused fresh and stored platelets are detected in clots in vivo. STUDY DESIGN AND METHODS: Platelet units stored in mouse plasma were prepared using a modified platelet rich plasma collection protocol. Characteristics of fresh and stored units, including pH, cell count, in vitro measures of activity, including activation and aggregation, and post-transfusion recovery (PTR), were determined. Lastly, a tail transection assay was conducted using mice transfused with fresh or stored units, and transfused platelets were identified by confocal imaging. RESULTS: Platelet units had acceptable platelet and white cell counts and were negative for bacterial contamination. Fresh and 1-day stored units had acceptable pH; the platelets were activatable by thrombin and ADP, aggregable with thrombin, had acceptable PTR, and were present in vivo in clots of recipients after tail transection. In contrast, 2-day stored units had clinically unacceptable quality. DISCUSSION: We developed mouse platelets for transfusion analogous to human platelet units using a modified platelet rich plasma collection protocol with maximum storage of 1 day for an \"old\" unit. This provides a powerful tool to test how process modifications and storage conditions affect transfused platelet function in vivo.","PeriodicalId":486943,"journal":{"name":"bioRxiv (Cold Spring Harbor Laboratory)","volume":"44 15","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of a Novel Mouse Platelet Transfusion Model\",\"authors\":\"Dominique Gordy, Theresa Swayne, Gregory J Berry, Tiffany A. Thomas, Krystalyn E Hudson, Elizabeth F Stone\",\"doi\":\"10.1101/2023.11.10.566577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BACKGROUND: Platelet transfusions are increasing with advances in medical care. Based on FDA criteria, platelet units are assessed by in vitro measures; however, it is not known how platelet processing and storage duration affect function in vivo. To address this, we developed a novel platelet transfusion model that meets FDA criteria adapted to mice, and transfused fresh and stored platelets are detected in clots in vivo. STUDY DESIGN AND METHODS: Platelet units stored in mouse plasma were prepared using a modified platelet rich plasma collection protocol. Characteristics of fresh and stored units, including pH, cell count, in vitro measures of activity, including activation and aggregation, and post-transfusion recovery (PTR), were determined. Lastly, a tail transection assay was conducted using mice transfused with fresh or stored units, and transfused platelets were identified by confocal imaging. RESULTS: Platelet units had acceptable platelet and white cell counts and were negative for bacterial contamination. Fresh and 1-day stored units had acceptable pH; the platelets were activatable by thrombin and ADP, aggregable with thrombin, had acceptable PTR, and were present in vivo in clots of recipients after tail transection. In contrast, 2-day stored units had clinically unacceptable quality. DISCUSSION: We developed mouse platelets for transfusion analogous to human platelet units using a modified platelet rich plasma collection protocol with maximum storage of 1 day for an \\\"old\\\" unit. This provides a powerful tool to test how process modifications and storage conditions affect transfused platelet function in vivo.\",\"PeriodicalId\":486943,\"journal\":{\"name\":\"bioRxiv (Cold Spring Harbor Laboratory)\",\"volume\":\"44 15\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv (Cold Spring Harbor Laboratory)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.11.10.566577\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv (Cold Spring Harbor Laboratory)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.11.10.566577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Characterization of a Novel Mouse Platelet Transfusion Model
BACKGROUND: Platelet transfusions are increasing with advances in medical care. Based on FDA criteria, platelet units are assessed by in vitro measures; however, it is not known how platelet processing and storage duration affect function in vivo. To address this, we developed a novel platelet transfusion model that meets FDA criteria adapted to mice, and transfused fresh and stored platelets are detected in clots in vivo. STUDY DESIGN AND METHODS: Platelet units stored in mouse plasma were prepared using a modified platelet rich plasma collection protocol. Characteristics of fresh and stored units, including pH, cell count, in vitro measures of activity, including activation and aggregation, and post-transfusion recovery (PTR), were determined. Lastly, a tail transection assay was conducted using mice transfused with fresh or stored units, and transfused platelets were identified by confocal imaging. RESULTS: Platelet units had acceptable platelet and white cell counts and were negative for bacterial contamination. Fresh and 1-day stored units had acceptable pH; the platelets were activatable by thrombin and ADP, aggregable with thrombin, had acceptable PTR, and were present in vivo in clots of recipients after tail transection. In contrast, 2-day stored units had clinically unacceptable quality. DISCUSSION: We developed mouse platelets for transfusion analogous to human platelet units using a modified platelet rich plasma collection protocol with maximum storage of 1 day for an "old" unit. This provides a powerful tool to test how process modifications and storage conditions affect transfused platelet function in vivo.