{"title":"番茄乙烯不敏感突变体表现出生长改变和果实中较高的β-胡萝卜素水平","authors":"Suresh Kumar Gupta, Parankusam Santisree, Prateek Gupta, Himabindu Vasuki Kilambi, Yellamaraju Sreelakshmi, Rameshwar Sharma","doi":"10.1101/2023.11.14.566984","DOIUrl":null,"url":null,"abstract":"The mutants insensitive to ethylene are helpful in deciphering the role of ethylene in plant development. We isolated an ethylene-insensitive tomato (Solanum lycopersicum) mutant by screening for acetylene-resistant (atr-1) seedlings. The atr-1 mutant displayed resistance to kinetin, suggesting attenuation of the ethylene sensing response. atr-1 also exhibited resistance to ABA- and glucose-mediated inhibition of seed germination. Unlike the Never-ripe (Nr) mutant, atr-1 seedlings were resistant to glucose, indicating ethylene sensing in atr-1 is located in a component distinct from Nr. Metabolically, atr-1 seedlings had lower levels of amino acids but higher levels of several phytohormones, including ABA. atr-1 plants grew faster and produced more flowers, leading to a higher fruit set. However, the atr-1 fruits took a longer duration to reach the red-ripe (RR) stage. The ripened atr-1 fruits had higher β-carotene levels, retained high β-carotene and lycopene levels post-RR stage. The metabolome profiles of post-RR stage atr-1 fruits revealed increased levels of sugars. The atr-1 had a P279L mutation in the GAF domain of the ETR4, a key ethylene receptor regulating tomato ripening. Our study highlights that novel alleles in ethylene receptors may aid in enhancing the nutritional quality of tomato.","PeriodicalId":486943,"journal":{"name":"bioRxiv (Cold Spring Harbor Laboratory)","volume":"41 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A tomato ethylene-insensitive mutant displays altered growth and higher β-carotene levels in fruit\",\"authors\":\"Suresh Kumar Gupta, Parankusam Santisree, Prateek Gupta, Himabindu Vasuki Kilambi, Yellamaraju Sreelakshmi, Rameshwar Sharma\",\"doi\":\"10.1101/2023.11.14.566984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mutants insensitive to ethylene are helpful in deciphering the role of ethylene in plant development. We isolated an ethylene-insensitive tomato (Solanum lycopersicum) mutant by screening for acetylene-resistant (atr-1) seedlings. The atr-1 mutant displayed resistance to kinetin, suggesting attenuation of the ethylene sensing response. atr-1 also exhibited resistance to ABA- and glucose-mediated inhibition of seed germination. Unlike the Never-ripe (Nr) mutant, atr-1 seedlings were resistant to glucose, indicating ethylene sensing in atr-1 is located in a component distinct from Nr. Metabolically, atr-1 seedlings had lower levels of amino acids but higher levels of several phytohormones, including ABA. atr-1 plants grew faster and produced more flowers, leading to a higher fruit set. However, the atr-1 fruits took a longer duration to reach the red-ripe (RR) stage. The ripened atr-1 fruits had higher β-carotene levels, retained high β-carotene and lycopene levels post-RR stage. The metabolome profiles of post-RR stage atr-1 fruits revealed increased levels of sugars. The atr-1 had a P279L mutation in the GAF domain of the ETR4, a key ethylene receptor regulating tomato ripening. Our study highlights that novel alleles in ethylene receptors may aid in enhancing the nutritional quality of tomato.\",\"PeriodicalId\":486943,\"journal\":{\"name\":\"bioRxiv (Cold Spring Harbor Laboratory)\",\"volume\":\"41 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv (Cold Spring Harbor Laboratory)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.11.14.566984\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv (Cold Spring Harbor Laboratory)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.11.14.566984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A tomato ethylene-insensitive mutant displays altered growth and higher β-carotene levels in fruit
The mutants insensitive to ethylene are helpful in deciphering the role of ethylene in plant development. We isolated an ethylene-insensitive tomato (Solanum lycopersicum) mutant by screening for acetylene-resistant (atr-1) seedlings. The atr-1 mutant displayed resistance to kinetin, suggesting attenuation of the ethylene sensing response. atr-1 also exhibited resistance to ABA- and glucose-mediated inhibition of seed germination. Unlike the Never-ripe (Nr) mutant, atr-1 seedlings were resistant to glucose, indicating ethylene sensing in atr-1 is located in a component distinct from Nr. Metabolically, atr-1 seedlings had lower levels of amino acids but higher levels of several phytohormones, including ABA. atr-1 plants grew faster and produced more flowers, leading to a higher fruit set. However, the atr-1 fruits took a longer duration to reach the red-ripe (RR) stage. The ripened atr-1 fruits had higher β-carotene levels, retained high β-carotene and lycopene levels post-RR stage. The metabolome profiles of post-RR stage atr-1 fruits revealed increased levels of sugars. The atr-1 had a P279L mutation in the GAF domain of the ETR4, a key ethylene receptor regulating tomato ripening. Our study highlights that novel alleles in ethylene receptors may aid in enhancing the nutritional quality of tomato.