John L. Spiesberger, David J. Geroski, David R. Dowling
{"title":"利用海洋内重力波频差定位估算声源位置","authors":"John L. Spiesberger, David J. Geroski, David R. Dowling","doi":"10.1142/s2591728523500172","DOIUrl":null,"url":null,"abstract":"Frequency-difference source localization (FDSL) is a relatively new method for locating sources emitting acoustic or electromagnetic waves from recorded data. Estimates of location are produced by matching a nonlinear function of the received data with the same nonlinear function of modeled data. This so-called matched-field approach depends on the accuracy of the modeled field. FDSL exhibits less sensitivity to model errors in some cases of interest. Fluctuations of the speed of sound in the ocean are affected by a wide variety of phenomena and internal gravity waves is one where their spectrum is usually well known. There is no analytical theory for predicting how these fluctuations of sound speed affect the accuracy of FDSL, leaving a numerical evaluation as the alternative for the focus of this paper. Experimental application of FDSL was previously made for an acoustic source of 100[Formula: see text]Hz bandwidth surrounding 250[Formula: see text]Hz for a 129[Formula: see text]km section in the Philippine Sea with data recorded on a long vertical array [Geroski and Dowling, Long-range frequency-difference source localization in the Philippine Sea, J. Acoust. Soc. Am. 146 (2019) 4727–4739.]. The role of internal waves is quantified with a realistic FDSL simulation using models based on the parabolic and ray approximations of the linear acoustic wave equation. The modeled vertical variation of FDSL error is similar to observed while the modeled horizontal error is too small. The complicated software model is automatic but is computationally intensive, with our version needing about 1.5[Formula: see text]mo to compute on a PC with 16 cpu cores.","PeriodicalId":55976,"journal":{"name":"Journal of Theoretical and Computational Acoustics","volume":"212 ","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating Location of Acoustic Sources via Oceanic Internal Gravity Waves' Frequency-Difference Source Localization\",\"authors\":\"John L. Spiesberger, David J. Geroski, David R. Dowling\",\"doi\":\"10.1142/s2591728523500172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Frequency-difference source localization (FDSL) is a relatively new method for locating sources emitting acoustic or electromagnetic waves from recorded data. Estimates of location are produced by matching a nonlinear function of the received data with the same nonlinear function of modeled data. This so-called matched-field approach depends on the accuracy of the modeled field. FDSL exhibits less sensitivity to model errors in some cases of interest. Fluctuations of the speed of sound in the ocean are affected by a wide variety of phenomena and internal gravity waves is one where their spectrum is usually well known. There is no analytical theory for predicting how these fluctuations of sound speed affect the accuracy of FDSL, leaving a numerical evaluation as the alternative for the focus of this paper. Experimental application of FDSL was previously made for an acoustic source of 100[Formula: see text]Hz bandwidth surrounding 250[Formula: see text]Hz for a 129[Formula: see text]km section in the Philippine Sea with data recorded on a long vertical array [Geroski and Dowling, Long-range frequency-difference source localization in the Philippine Sea, J. Acoust. Soc. Am. 146 (2019) 4727–4739.]. The role of internal waves is quantified with a realistic FDSL simulation using models based on the parabolic and ray approximations of the linear acoustic wave equation. The modeled vertical variation of FDSL error is similar to observed while the modeled horizontal error is too small. The complicated software model is automatic but is computationally intensive, with our version needing about 1.5[Formula: see text]mo to compute on a PC with 16 cpu cores.\",\"PeriodicalId\":55976,\"journal\":{\"name\":\"Journal of Theoretical and Computational Acoustics\",\"volume\":\"212 \",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Theoretical and Computational Acoustics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s2591728523500172\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical and Computational Acoustics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2591728523500172","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
Estimating Location of Acoustic Sources via Oceanic Internal Gravity Waves' Frequency-Difference Source Localization
Frequency-difference source localization (FDSL) is a relatively new method for locating sources emitting acoustic or electromagnetic waves from recorded data. Estimates of location are produced by matching a nonlinear function of the received data with the same nonlinear function of modeled data. This so-called matched-field approach depends on the accuracy of the modeled field. FDSL exhibits less sensitivity to model errors in some cases of interest. Fluctuations of the speed of sound in the ocean are affected by a wide variety of phenomena and internal gravity waves is one where their spectrum is usually well known. There is no analytical theory for predicting how these fluctuations of sound speed affect the accuracy of FDSL, leaving a numerical evaluation as the alternative for the focus of this paper. Experimental application of FDSL was previously made for an acoustic source of 100[Formula: see text]Hz bandwidth surrounding 250[Formula: see text]Hz for a 129[Formula: see text]km section in the Philippine Sea with data recorded on a long vertical array [Geroski and Dowling, Long-range frequency-difference source localization in the Philippine Sea, J. Acoust. Soc. Am. 146 (2019) 4727–4739.]. The role of internal waves is quantified with a realistic FDSL simulation using models based on the parabolic and ray approximations of the linear acoustic wave equation. The modeled vertical variation of FDSL error is similar to observed while the modeled horizontal error is too small. The complicated software model is automatic but is computationally intensive, with our version needing about 1.5[Formula: see text]mo to compute on a PC with 16 cpu cores.
期刊介绍:
The aim of this journal is to provide an international forum for the dissemination of the state-of-the-art information in the field of Computational Acoustics.
Topics covered by this journal include research and tutorial contributions in OCEAN ACOUSTICS (a subject of active research in relation with sonar detection and the design of noiseless ships), SEISMO-ACOUSTICS (of concern to earthquake science and engineering, and also to those doing underground prospection like searching for petroleum), AEROACOUSTICS (which includes the analysis of noise created by aircraft), COMPUTATIONAL METHODS, and SUPERCOMPUTING. In addition to the traditional issues and problems in computational methods, the journal also considers theoretical research acoustics papers which lead to large-scale scientific computations.