基于地磁数据智能分析的极光局部诊断

Pub Date : 2023-06-29 DOI:10.12737/stp-92202303
Andrey Vorobev, Anatoly Soloviev, Vyacheslav Pilipenko, Gulnara Vorobeva, Aliya Gainetdinova, Aleksandr Lapin, Vladimir Belahovskiy, Alexey Roldugin
{"title":"基于地磁数据智能分析的极光局部诊断","authors":"Andrey Vorobev, Anatoly Soloviev, Vyacheslav Pilipenko, Gulnara Vorobeva, Aliya Gainetdinova, Aleksandr Lapin, Vladimir Belahovskiy, Alexey Roldugin","doi":"10.12737/stp-92202303","DOIUrl":null,"url":null,"abstract":"Despite the existing variety of approaches to monitoring space weather and geophysical parameters in the auroral oval region, the issue of effective prediction and diagnostics of auroras as a special state of the upper ionosphere at high latitudes remains virtually unresolved.
 In this paper, we explore the possibility of local diagnostics of auroras through mining of geomagnetic data from ground-based sources. We assess the significance of indicative variables and their statistical relationship.
 So, for example, the application of Bayesian inference to the data from the Lovozero geophysical station for 2012–2020 has shown that the dependence of a posteriori probability of observing auroras in the optical range on the state of geomagnetic parameters is logarithmic, and the degree of its significance is inversely proportional to the discrepancy between empirical data and approximating function.
 The accuracy of the approach to diagnostics of aurora presence based on the random forest method is at least 86 % when using several local predictors and ~80 % when using several global geomagnetic activity indices characterizing the geomagnetic field disturbance in the auroral zone.
 In conclusion, we discuss promising ways to improve the quality metrics of diagnostic models and their scope.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Local diagnostics of aurora presence based on intelligent analysis of geomagnetic data\",\"authors\":\"Andrey Vorobev, Anatoly Soloviev, Vyacheslav Pilipenko, Gulnara Vorobeva, Aliya Gainetdinova, Aleksandr Lapin, Vladimir Belahovskiy, Alexey Roldugin\",\"doi\":\"10.12737/stp-92202303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite the existing variety of approaches to monitoring space weather and geophysical parameters in the auroral oval region, the issue of effective prediction and diagnostics of auroras as a special state of the upper ionosphere at high latitudes remains virtually unresolved.
 In this paper, we explore the possibility of local diagnostics of auroras through mining of geomagnetic data from ground-based sources. We assess the significance of indicative variables and their statistical relationship.
 So, for example, the application of Bayesian inference to the data from the Lovozero geophysical station for 2012–2020 has shown that the dependence of a posteriori probability of observing auroras in the optical range on the state of geomagnetic parameters is logarithmic, and the degree of its significance is inversely proportional to the discrepancy between empirical data and approximating function.
 The accuracy of the approach to diagnostics of aurora presence based on the random forest method is at least 86 % when using several local predictors and ~80 % when using several global geomagnetic activity indices characterizing the geomagnetic field disturbance in the auroral zone.
 In conclusion, we discuss promising ways to improve the quality metrics of diagnostic models and their scope.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12737/stp-92202303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12737/stp-92202303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

尽管已有多种方法监测极光椭圆区空间天气和地球物理参数,但有效预测和诊断极光作为高纬度地区电离层上层的一种特殊状态的问题实际上仍然没有解决。在本文中,我们探讨了通过从地面来源挖掘地磁数据来局部诊断极光的可能性。我们评估了指示变量及其统计关系的显著性。 因此,以2012-2020年Lovozero地球物理站数据为例,应用贝叶斯推理表明,光学范围内观测极光的后验概率与地磁参数状态的相关性为对数,其显著程度与经验数据与近似函数之间的差异成反比。 当使用几个局部预测因子时,基于随机森林方法的极光存在诊断方法的准确率至少为86%,当使用几个表征极光区地磁场扰动的全球地磁活动指数时,该方法的准确率约为80%。 总之,我们讨论了有希望的方法来提高诊断模型的质量指标及其范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Local diagnostics of aurora presence based on intelligent analysis of geomagnetic data
Despite the existing variety of approaches to monitoring space weather and geophysical parameters in the auroral oval region, the issue of effective prediction and diagnostics of auroras as a special state of the upper ionosphere at high latitudes remains virtually unresolved. In this paper, we explore the possibility of local diagnostics of auroras through mining of geomagnetic data from ground-based sources. We assess the significance of indicative variables and their statistical relationship. So, for example, the application of Bayesian inference to the data from the Lovozero geophysical station for 2012–2020 has shown that the dependence of a posteriori probability of observing auroras in the optical range on the state of geomagnetic parameters is logarithmic, and the degree of its significance is inversely proportional to the discrepancy between empirical data and approximating function. The accuracy of the approach to diagnostics of aurora presence based on the random forest method is at least 86 % when using several local predictors and ~80 % when using several global geomagnetic activity indices characterizing the geomagnetic field disturbance in the auroral zone. In conclusion, we discuss promising ways to improve the quality metrics of diagnostic models and their scope.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1