数据库逻辑错误检测系统DLBD的演示

IF 2.6 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Proceedings of the Vldb Endowment Pub Date : 2023-08-01 DOI:10.14778/3611540.3611584
Xiu Tang, Sai Wu, Dongxiang Zhang, Ziyue Wang, Gongsheng Yuan, Gang Chen
{"title":"数据库逻辑错误检测系统DLBD的演示","authors":"Xiu Tang, Sai Wu, Dongxiang Zhang, Ziyue Wang, Gongsheng Yuan, Gang Chen","doi":"10.14778/3611540.3611584","DOIUrl":null,"url":null,"abstract":"Database management systems (DBMSs) are prone to logic bugs that can result in incorrect query results. Current debugging tools are limited to single table queries and struggle with issues like lack of ground-truth results and repetitive query space exploration. In this paper, we demonstrate DLBD, a system that automatically detects logic bugs in databases. DLBD offers holistic logic bug detection by providing automatic schema and query generation and ground-truth query result retrieval. Additionally, DLBD provides minimal test cases and root cause analysis for each bug to aid developers in reproducing and fixing detected bugs. DLBD incorporates heuristics and domain-specific knowledge to efficiently prune the search space and employs query space exploration mechanisms to avoid the repetitive search. Finally, DLBD utilizes a distributed processing framework to test database logic bugs in a scalable and efficient manner. Our system offers developers a reliable and effective way to detect and fix logic bugs in DBMSs.","PeriodicalId":54220,"journal":{"name":"Proceedings of the Vldb Endowment","volume":"72 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Demonstration of DLBD: Database Logic Bug Detection System\",\"authors\":\"Xiu Tang, Sai Wu, Dongxiang Zhang, Ziyue Wang, Gongsheng Yuan, Gang Chen\",\"doi\":\"10.14778/3611540.3611584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Database management systems (DBMSs) are prone to logic bugs that can result in incorrect query results. Current debugging tools are limited to single table queries and struggle with issues like lack of ground-truth results and repetitive query space exploration. In this paper, we demonstrate DLBD, a system that automatically detects logic bugs in databases. DLBD offers holistic logic bug detection by providing automatic schema and query generation and ground-truth query result retrieval. Additionally, DLBD provides minimal test cases and root cause analysis for each bug to aid developers in reproducing and fixing detected bugs. DLBD incorporates heuristics and domain-specific knowledge to efficiently prune the search space and employs query space exploration mechanisms to avoid the repetitive search. Finally, DLBD utilizes a distributed processing framework to test database logic bugs in a scalable and efficient manner. Our system offers developers a reliable and effective way to detect and fix logic bugs in DBMSs.\",\"PeriodicalId\":54220,\"journal\":{\"name\":\"Proceedings of the Vldb Endowment\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Vldb Endowment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14778/3611540.3611584\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Vldb Endowment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14778/3611540.3611584","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

数据库管理系统(dbms)容易出现逻辑错误,从而导致错误的查询结果。当前的调试工具仅限于单表查询,并且存在缺乏真实结果和重复查询空间探索等问题。在本文中,我们演示了DLBD,一个自动检测数据库中的逻辑错误的系统。DLBD通过提供自动模式和查询生成以及基本事实查询结果检索来提供整体逻辑错误检测。此外,DLBD为每个bug提供最小的测试用例和根本原因分析,以帮助开发人员重现和修复检测到的bug。DLBD结合启发式和领域特定知识来有效地修剪搜索空间,并采用查询空间探索机制来避免重复搜索。最后,DLBD利用分布式处理框架以可扩展和有效的方式测试数据库逻辑错误。我们的系统为开发人员提供了一种可靠而有效的方法来检测和修复dbms中的逻辑错误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Demonstration of DLBD: Database Logic Bug Detection System
Database management systems (DBMSs) are prone to logic bugs that can result in incorrect query results. Current debugging tools are limited to single table queries and struggle with issues like lack of ground-truth results and repetitive query space exploration. In this paper, we demonstrate DLBD, a system that automatically detects logic bugs in databases. DLBD offers holistic logic bug detection by providing automatic schema and query generation and ground-truth query result retrieval. Additionally, DLBD provides minimal test cases and root cause analysis for each bug to aid developers in reproducing and fixing detected bugs. DLBD incorporates heuristics and domain-specific knowledge to efficiently prune the search space and employs query space exploration mechanisms to avoid the repetitive search. Finally, DLBD utilizes a distributed processing framework to test database logic bugs in a scalable and efficient manner. Our system offers developers a reliable and effective way to detect and fix logic bugs in DBMSs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the Vldb Endowment
Proceedings of the Vldb Endowment Computer Science-General Computer Science
CiteScore
7.70
自引率
0.00%
发文量
95
期刊介绍: The Proceedings of the VLDB (PVLDB) welcomes original research papers on a broad range of research topics related to all aspects of data management, where systems issues play a significant role, such as data management system technology and information management infrastructures, including their very large scale of experimentation, novel architectures, and demanding applications as well as their underpinning theory. The scope of a submission for PVLDB is also described by the subject areas given below. Moreover, the scope of PVLDB is restricted to scientific areas that are covered by the combined expertise on the submission’s topic of the journal’s editorial board. Finally, the submission’s contributions should build on work already published in data management outlets, e.g., PVLDB, VLDBJ, ACM SIGMOD, IEEE ICDE, EDBT, ACM TODS, IEEE TKDE, and go beyond a syntactic citation.
期刊最新文献
Auditory Brainstem Response in a Child with Mitochondrial Disorder-Leigh Syndrome. Breathing New Life into an Old Tree: Resolving Logging Dilemma of B + -tree on Modern Computational Storage Drives QO-Insight: Inspecting Steered Query Optimizers A Learned Query Rewrite System Demonstrating ADOPT: Adaptively Optimizing Attribute Orders for Worst-Case Optimal Joins via Reinforcement Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1