法学硕士将重塑、强化还是扼杀数据科学?(VLDB 2023面板)

IF 2.6 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Proceedings of the Vldb Endowment Pub Date : 2023-08-01 DOI:10.14778/3611540.3611634
Alon Halevy, Yejin Choi, Avrilia Floratou, Michael J. Franklin, Natasha Noy, Haixun Wang
{"title":"法学硕士将重塑、强化还是扼杀数据科学?(VLDB 2023面板)","authors":"Alon Halevy, Yejin Choi, Avrilia Floratou, Michael J. Franklin, Natasha Noy, Haixun Wang","doi":"10.14778/3611540.3611634","DOIUrl":null,"url":null,"abstract":"Large language models (LLMs) have recently taken the world by storm, promising potentially game changing opportunities in multiple fields. Naturally, there is significant promise in applying LLMs to the management of structured data, or more generally, to the processes involved in data science. At the very least, LLMs have the potential to provide substantial advancements in long-standing challenges that our community has been tackling for decades. On the other hand, they may introduce completely new capabilities that we have only dreamed of thus far. This panel will bring together a few leading experts who have been thinking about these opportunities from various perspectives and fielding them in research prototypes and even in commercial applications.","PeriodicalId":54220,"journal":{"name":"Proceedings of the Vldb Endowment","volume":"8 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Will LLMs Reshape, Supercharge, or Kill Data Science? (VLDB 2023 Panel)\",\"authors\":\"Alon Halevy, Yejin Choi, Avrilia Floratou, Michael J. Franklin, Natasha Noy, Haixun Wang\",\"doi\":\"10.14778/3611540.3611634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large language models (LLMs) have recently taken the world by storm, promising potentially game changing opportunities in multiple fields. Naturally, there is significant promise in applying LLMs to the management of structured data, or more generally, to the processes involved in data science. At the very least, LLMs have the potential to provide substantial advancements in long-standing challenges that our community has been tackling for decades. On the other hand, they may introduce completely new capabilities that we have only dreamed of thus far. This panel will bring together a few leading experts who have been thinking about these opportunities from various perspectives and fielding them in research prototypes and even in commercial applications.\",\"PeriodicalId\":54220,\"journal\":{\"name\":\"Proceedings of the Vldb Endowment\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Vldb Endowment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14778/3611540.3611634\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Vldb Endowment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14778/3611540.3611634","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

大型语言模型(llm)最近风靡全球,在多个领域提供了潜在的改变游戏规则的机会。当然,将法学硕士应用于结构化数据的管理,或者更一般地说,应用于数据科学中涉及的过程,有很大的前景。至少,法学硕士有潜力为我们的社区几十年来一直在解决的长期挑战提供实质性的进步。另一方面,它们可能会引入我们迄今为止只能梦想的全新功能。该小组将汇集一些领先的专家,他们一直在从不同的角度思考这些机会,并将其应用于研究原型甚至商业应用中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Will LLMs Reshape, Supercharge, or Kill Data Science? (VLDB 2023 Panel)
Large language models (LLMs) have recently taken the world by storm, promising potentially game changing opportunities in multiple fields. Naturally, there is significant promise in applying LLMs to the management of structured data, or more generally, to the processes involved in data science. At the very least, LLMs have the potential to provide substantial advancements in long-standing challenges that our community has been tackling for decades. On the other hand, they may introduce completely new capabilities that we have only dreamed of thus far. This panel will bring together a few leading experts who have been thinking about these opportunities from various perspectives and fielding them in research prototypes and even in commercial applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the Vldb Endowment
Proceedings of the Vldb Endowment Computer Science-General Computer Science
CiteScore
7.70
自引率
0.00%
发文量
95
期刊介绍: The Proceedings of the VLDB (PVLDB) welcomes original research papers on a broad range of research topics related to all aspects of data management, where systems issues play a significant role, such as data management system technology and information management infrastructures, including their very large scale of experimentation, novel architectures, and demanding applications as well as their underpinning theory. The scope of a submission for PVLDB is also described by the subject areas given below. Moreover, the scope of PVLDB is restricted to scientific areas that are covered by the combined expertise on the submission’s topic of the journal’s editorial board. Finally, the submission’s contributions should build on work already published in data management outlets, e.g., PVLDB, VLDBJ, ACM SIGMOD, IEEE ICDE, EDBT, ACM TODS, IEEE TKDE, and go beyond a syntactic citation.
期刊最新文献
Auditory Brainstem Response in a Child with Mitochondrial Disorder-Leigh Syndrome. Breathing New Life into an Old Tree: Resolving Logging Dilemma of B + -tree on Modern Computational Storage Drives QO-Insight: Inspecting Steered Query Optimizers A Learned Query Rewrite System Demonstrating ADOPT: Adaptively Optimizing Attribute Orders for Worst-Case Optimal Joins via Reinforcement Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1