Zhicheng Pan, Yihang Wang, Yingying Zhang, Sean Bin Yang, Yunyao Cheng, Peng Chen, Chenjuan Guo, Qingsong Wen, Xiduo Tian, Yunliang Dou, Zhiqiang Zhou, Chengcheng Yang, Aoying Zhou, Bin Yang
{"title":"MagicScaler:不确定性意识,预测性自动缩放","authors":"Zhicheng Pan, Yihang Wang, Yingying Zhang, Sean Bin Yang, Yunyao Cheng, Peng Chen, Chenjuan Guo, Qingsong Wen, Xiduo Tian, Yunliang Dou, Zhiqiang Zhou, Chengcheng Yang, Aoying Zhou, Bin Yang","doi":"10.14778/3611540.3611566","DOIUrl":null,"url":null,"abstract":"Predictive autoscaling is a key enabler for optimizing cloud resource allocation in Alibaba Cloud's computing platforms, which dynamically adjust the Elastic Compute Service (ECS) instances based on predicted user demands to ensure Quality of Service (QoS). However, user demands in the cloud are often highly complex, with high uncertainty and scale-sensitive temporal dependencies, thus posing great challenges for accurate prediction of future demands. These in turn make autoscaling challenging---autoscaling needs to properly account for demand uncertainty while maintaining a reasonable trade-off between two contradictory factors, i.e., low instance running costs vs. low QoS violation risks. To address the above challenges, we propose a novel predictive autoscaling framework MagicScaler , consisting of a Multi-scale attentive Gaussian process based predictor and an uncertainty-aware scaler. First, the predictor carefully bridges the best of two successful prediction methodologies---multi-scale attention mechanisms, which are good at capturing complex, multi-scale features, and stochastic process regression, which can quantify prediction uncertainty, thus achieving accurate demand prediction with quantified uncertainty. Second, the scaler takes the quantified future demand uncertainty into a judiciously designed loss function with stochastic constraints, enabling flexible trade-off between running costs and QoS violation risks. Extensive experiments on three clusters of Alibaba Cloud in different Chinese cities demonstrate the effectiveness and efficiency of MagicScaler , which outperforms other commonly adopted scalers, thus justifying our design choices.","PeriodicalId":54220,"journal":{"name":"Proceedings of the Vldb Endowment","volume":"8 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"MagicScaler: Uncertainty-Aware, Predictive Autoscaling\",\"authors\":\"Zhicheng Pan, Yihang Wang, Yingying Zhang, Sean Bin Yang, Yunyao Cheng, Peng Chen, Chenjuan Guo, Qingsong Wen, Xiduo Tian, Yunliang Dou, Zhiqiang Zhou, Chengcheng Yang, Aoying Zhou, Bin Yang\",\"doi\":\"10.14778/3611540.3611566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predictive autoscaling is a key enabler for optimizing cloud resource allocation in Alibaba Cloud's computing platforms, which dynamically adjust the Elastic Compute Service (ECS) instances based on predicted user demands to ensure Quality of Service (QoS). However, user demands in the cloud are often highly complex, with high uncertainty and scale-sensitive temporal dependencies, thus posing great challenges for accurate prediction of future demands. These in turn make autoscaling challenging---autoscaling needs to properly account for demand uncertainty while maintaining a reasonable trade-off between two contradictory factors, i.e., low instance running costs vs. low QoS violation risks. To address the above challenges, we propose a novel predictive autoscaling framework MagicScaler , consisting of a Multi-scale attentive Gaussian process based predictor and an uncertainty-aware scaler. First, the predictor carefully bridges the best of two successful prediction methodologies---multi-scale attention mechanisms, which are good at capturing complex, multi-scale features, and stochastic process regression, which can quantify prediction uncertainty, thus achieving accurate demand prediction with quantified uncertainty. Second, the scaler takes the quantified future demand uncertainty into a judiciously designed loss function with stochastic constraints, enabling flexible trade-off between running costs and QoS violation risks. Extensive experiments on three clusters of Alibaba Cloud in different Chinese cities demonstrate the effectiveness and efficiency of MagicScaler , which outperforms other commonly adopted scalers, thus justifying our design choices.\",\"PeriodicalId\":54220,\"journal\":{\"name\":\"Proceedings of the Vldb Endowment\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Vldb Endowment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14778/3611540.3611566\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Vldb Endowment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14778/3611540.3611566","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Predictive autoscaling is a key enabler for optimizing cloud resource allocation in Alibaba Cloud's computing platforms, which dynamically adjust the Elastic Compute Service (ECS) instances based on predicted user demands to ensure Quality of Service (QoS). However, user demands in the cloud are often highly complex, with high uncertainty and scale-sensitive temporal dependencies, thus posing great challenges for accurate prediction of future demands. These in turn make autoscaling challenging---autoscaling needs to properly account for demand uncertainty while maintaining a reasonable trade-off between two contradictory factors, i.e., low instance running costs vs. low QoS violation risks. To address the above challenges, we propose a novel predictive autoscaling framework MagicScaler , consisting of a Multi-scale attentive Gaussian process based predictor and an uncertainty-aware scaler. First, the predictor carefully bridges the best of two successful prediction methodologies---multi-scale attention mechanisms, which are good at capturing complex, multi-scale features, and stochastic process regression, which can quantify prediction uncertainty, thus achieving accurate demand prediction with quantified uncertainty. Second, the scaler takes the quantified future demand uncertainty into a judiciously designed loss function with stochastic constraints, enabling flexible trade-off between running costs and QoS violation risks. Extensive experiments on three clusters of Alibaba Cloud in different Chinese cities demonstrate the effectiveness and efficiency of MagicScaler , which outperforms other commonly adopted scalers, thus justifying our design choices.
期刊介绍:
The Proceedings of the VLDB (PVLDB) welcomes original research papers on a broad range of research topics related to all aspects of data management, where systems issues play a significant role, such as data management system technology and information management infrastructures, including their very large scale of experimentation, novel architectures, and demanding applications as well as their underpinning theory. The scope of a submission for PVLDB is also described by the subject areas given below. Moreover, the scope of PVLDB is restricted to scientific areas that are covered by the combined expertise on the submission’s topic of the journal’s editorial board. Finally, the submission’s contributions should build on work already published in data management outlets, e.g., PVLDB, VLDBJ, ACM SIGMOD, IEEE ICDE, EDBT, ACM TODS, IEEE TKDE, and go beyond a syntactic citation.