Luca Zecchini, Giovanni Simonini, Sonia Bergamaschi, Felix Naumann
{"title":"BrewER:按需实体解决方案","authors":"Luca Zecchini, Giovanni Simonini, Sonia Bergamaschi, Felix Naumann","doi":"10.14778/3611540.3611612","DOIUrl":null,"url":null,"abstract":"The task of entity resolution (ER) aims to detect multiple records describing the same real-world entity in datasets and to consolidate them into a single consistent record. ER plays a fundamental role in guaranteeing good data quality, e.g., as input for data science pipelines. Yet, the traditional approach to ER requires cleaning the entire data before being able to run consistent queries on it; hence, users struggle to tackle common scenarios with limited time or resources (e.g., when the data changes frequently or the user is only interested in a portion of the dataset for the task). We previously introduced BrewER, a framework to evaluate SQL SP queries on dirty data while progressively returning results as if they were issued on cleaned data, according to a priority defined by the user. In this demonstration, we show how BrewER can be exploited to ease the burden of ER, allowing data scientists to save a significant amount of resources for their tasks.","PeriodicalId":54220,"journal":{"name":"Proceedings of the Vldb Endowment","volume":"83 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BrewER: Entity Resolution On-Demand\",\"authors\":\"Luca Zecchini, Giovanni Simonini, Sonia Bergamaschi, Felix Naumann\",\"doi\":\"10.14778/3611540.3611612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The task of entity resolution (ER) aims to detect multiple records describing the same real-world entity in datasets and to consolidate them into a single consistent record. ER plays a fundamental role in guaranteeing good data quality, e.g., as input for data science pipelines. Yet, the traditional approach to ER requires cleaning the entire data before being able to run consistent queries on it; hence, users struggle to tackle common scenarios with limited time or resources (e.g., when the data changes frequently or the user is only interested in a portion of the dataset for the task). We previously introduced BrewER, a framework to evaluate SQL SP queries on dirty data while progressively returning results as if they were issued on cleaned data, according to a priority defined by the user. In this demonstration, we show how BrewER can be exploited to ease the burden of ER, allowing data scientists to save a significant amount of resources for their tasks.\",\"PeriodicalId\":54220,\"journal\":{\"name\":\"Proceedings of the Vldb Endowment\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Vldb Endowment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14778/3611540.3611612\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Vldb Endowment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14778/3611540.3611612","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
The task of entity resolution (ER) aims to detect multiple records describing the same real-world entity in datasets and to consolidate them into a single consistent record. ER plays a fundamental role in guaranteeing good data quality, e.g., as input for data science pipelines. Yet, the traditional approach to ER requires cleaning the entire data before being able to run consistent queries on it; hence, users struggle to tackle common scenarios with limited time or resources (e.g., when the data changes frequently or the user is only interested in a portion of the dataset for the task). We previously introduced BrewER, a framework to evaluate SQL SP queries on dirty data while progressively returning results as if they were issued on cleaned data, according to a priority defined by the user. In this demonstration, we show how BrewER can be exploited to ease the burden of ER, allowing data scientists to save a significant amount of resources for their tasks.
期刊介绍:
The Proceedings of the VLDB (PVLDB) welcomes original research papers on a broad range of research topics related to all aspects of data management, where systems issues play a significant role, such as data management system technology and information management infrastructures, including their very large scale of experimentation, novel architectures, and demanding applications as well as their underpinning theory. The scope of a submission for PVLDB is also described by the subject areas given below. Moreover, the scope of PVLDB is restricted to scientific areas that are covered by the combined expertise on the submission’s topic of the journal’s editorial board. Finally, the submission’s contributions should build on work already published in data management outlets, e.g., PVLDB, VLDBJ, ACM SIGMOD, IEEE ICDE, EDBT, ACM TODS, IEEE TKDE, and go beyond a syntactic citation.