{"title":"Hive: Apache Hive中基于数据流的查询执行性能分析","authors":"Chaozu Zhang, Qiaomu Shen, Bo Tang","doi":"10.14778/3611540.3611605","DOIUrl":null,"url":null,"abstract":"Nowadays, Apache Hive has been widely used for large-scale data analysis applications in many organizations. Various visual analytical tools are developed to help Hive users quickly analyze the query execution process and identify the performance bottleneck of executed queries. However, existing tools mostly focus on showing the time usage of query sub-components (jobs and operators) but fail to provide enough evidence to analyze the root reasons for the slow execution progress. To tackle this problem, we develop a visual analytical system DHive to visualize and analyze the query execution progress via dataflow analysis. DHive shows the dataflow during query execution at multiple levels: query level, job level and task level, which enable users to identify the key jobs/tasks and explain their time usage by linking them to the auxiliary information such as the system configuration and hardware status. We demonstrate the effectiveness of DHive by two cases in a production cluster. DHive is open-source at https://github.com/DBGroup-SUSTech/DHive.git.","PeriodicalId":54220,"journal":{"name":"Proceedings of the Vldb Endowment","volume":"222 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DHive: Query Execution Performance Analysis via Dataflow in Apache Hive\",\"authors\":\"Chaozu Zhang, Qiaomu Shen, Bo Tang\",\"doi\":\"10.14778/3611540.3611605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, Apache Hive has been widely used for large-scale data analysis applications in many organizations. Various visual analytical tools are developed to help Hive users quickly analyze the query execution process and identify the performance bottleneck of executed queries. However, existing tools mostly focus on showing the time usage of query sub-components (jobs and operators) but fail to provide enough evidence to analyze the root reasons for the slow execution progress. To tackle this problem, we develop a visual analytical system DHive to visualize and analyze the query execution progress via dataflow analysis. DHive shows the dataflow during query execution at multiple levels: query level, job level and task level, which enable users to identify the key jobs/tasks and explain their time usage by linking them to the auxiliary information such as the system configuration and hardware status. We demonstrate the effectiveness of DHive by two cases in a production cluster. DHive is open-source at https://github.com/DBGroup-SUSTech/DHive.git.\",\"PeriodicalId\":54220,\"journal\":{\"name\":\"Proceedings of the Vldb Endowment\",\"volume\":\"222 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Vldb Endowment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14778/3611540.3611605\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Vldb Endowment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14778/3611540.3611605","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
DHive: Query Execution Performance Analysis via Dataflow in Apache Hive
Nowadays, Apache Hive has been widely used for large-scale data analysis applications in many organizations. Various visual analytical tools are developed to help Hive users quickly analyze the query execution process and identify the performance bottleneck of executed queries. However, existing tools mostly focus on showing the time usage of query sub-components (jobs and operators) but fail to provide enough evidence to analyze the root reasons for the slow execution progress. To tackle this problem, we develop a visual analytical system DHive to visualize and analyze the query execution progress via dataflow analysis. DHive shows the dataflow during query execution at multiple levels: query level, job level and task level, which enable users to identify the key jobs/tasks and explain their time usage by linking them to the auxiliary information such as the system configuration and hardware status. We demonstrate the effectiveness of DHive by two cases in a production cluster. DHive is open-source at https://github.com/DBGroup-SUSTech/DHive.git.
期刊介绍:
The Proceedings of the VLDB (PVLDB) welcomes original research papers on a broad range of research topics related to all aspects of data management, where systems issues play a significant role, such as data management system technology and information management infrastructures, including their very large scale of experimentation, novel architectures, and demanding applications as well as their underpinning theory. The scope of a submission for PVLDB is also described by the subject areas given below. Moreover, the scope of PVLDB is restricted to scientific areas that are covered by the combined expertise on the submission’s topic of the journal’s editorial board. Finally, the submission’s contributions should build on work already published in data management outlets, e.g., PVLDB, VLDBJ, ACM SIGMOD, IEEE ICDE, EDBT, ACM TODS, IEEE TKDE, and go beyond a syntactic citation.