可伸缩子抽样:计算、聚合和推理

IF 2.4 2区 数学 Q2 BIOLOGY Biometrika Pub Date : 2023-03-21 DOI:10.1093/biomet/asad021
Dimitris N Politis
{"title":"可伸缩子抽样:计算、聚合和推理","authors":"Dimitris N Politis","doi":"10.1093/biomet/asad021","DOIUrl":null,"url":null,"abstract":"Abstract Subsampling has seen a resurgence in the big data era where the standard, full-resample size bootstrap can be infeasible to compute. Nevertheless, even choosing a single random subsample of size b can be computationally challenging with both b and the sample size n being very large. This paper shows how a set of appropriately chosen, nonrandom subsamples can be used to conduct effective, and computationally feasible, subsampling distribution estimation. Furthermore, the same set of subsamples can be used to yield a procedure for subsampling aggregation, also known as subagging, that is scalable with big data. Interestingly, the scalable subagging estimator can be tuned to have the same, or better, rate of convergence than that of θ^n. Statistical inference could then be based on the scalable subagging estimator instead of the original θ^n.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalable subsampling: computation, aggregation and inference\",\"authors\":\"Dimitris N Politis\",\"doi\":\"10.1093/biomet/asad021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Subsampling has seen a resurgence in the big data era where the standard, full-resample size bootstrap can be infeasible to compute. Nevertheless, even choosing a single random subsample of size b can be computationally challenging with both b and the sample size n being very large. This paper shows how a set of appropriately chosen, nonrandom subsamples can be used to conduct effective, and computationally feasible, subsampling distribution estimation. Furthermore, the same set of subsamples can be used to yield a procedure for subsampling aggregation, also known as subagging, that is scalable with big data. Interestingly, the scalable subagging estimator can be tuned to have the same, or better, rate of convergence than that of θ^n. Statistical inference could then be based on the scalable subagging estimator instead of the original θ^n.\",\"PeriodicalId\":9001,\"journal\":{\"name\":\"Biometrika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/biomet/asad021\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/biomet/asad021","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在大数据时代,由于标准的、全样本大小的bootstrap可能无法计算,子抽样已经重新兴起。然而,即使选择大小为b的单个随机子样本,在b和样本量n都非常大的情况下,也可能在计算上具有挑战性。本文展示了如何使用一组适当选择的非随机子样本进行有效且计算可行的子抽样分布估计。此外,同一组子样本可用于产生子样本聚合过程,也称为subagging,该过程可与大数据一起扩展。有趣的是,可伸缩subagging估计器可以被调整为具有与θ^n相同或更好的收敛率。统计推断可以基于可扩展subagging估计器而不是原始的θ^n。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scalable subsampling: computation, aggregation and inference
Abstract Subsampling has seen a resurgence in the big data era where the standard, full-resample size bootstrap can be infeasible to compute. Nevertheless, even choosing a single random subsample of size b can be computationally challenging with both b and the sample size n being very large. This paper shows how a set of appropriately chosen, nonrandom subsamples can be used to conduct effective, and computationally feasible, subsampling distribution estimation. Furthermore, the same set of subsamples can be used to yield a procedure for subsampling aggregation, also known as subagging, that is scalable with big data. Interestingly, the scalable subagging estimator can be tuned to have the same, or better, rate of convergence than that of θ^n. Statistical inference could then be based on the scalable subagging estimator instead of the original θ^n.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrika
Biometrika 生物-生物学
CiteScore
5.50
自引率
3.70%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Biometrika is primarily a journal of statistics in which emphasis is placed on papers containing original theoretical contributions of direct or potential value in applications. From time to time, papers in bordering fields are also published.
期刊最新文献
Local Bootstrap for Network Data A Simple Bootstrap for Chatterjee's Rank Correlation Sensitivity models and bounds under sequential unmeasured confounding in longitudinal studies Studies in the history of probability and statistics, LI: the first conditional logistic regression Skip-sampling: subsampling in the frequency domain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1