自动驾驶:学习查询优化任何SQL数据库

IF 2.6 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Proceedings of the Vldb Endowment Pub Date : 2023-08-01 DOI:10.14778/3611540.3611544
Christoph Anneser, Nesime Tatbul, David Cohen, Zhenggang Xu, Prithviraj Pandian, Nikolay Laptev, Ryan Marcus
{"title":"自动驾驶:学习查询优化任何SQL数据库","authors":"Christoph Anneser, Nesime Tatbul, David Cohen, Zhenggang Xu, Prithviraj Pandian, Nikolay Laptev, Ryan Marcus","doi":"10.14778/3611540.3611544","DOIUrl":null,"url":null,"abstract":"This paper presents AutoSteer, a learning-based solution that automatically drives query optimization in any SQL database that exposes tunable optimizer knobs. AutoSteer builds on the Bandit optimizer (Bao) and extends it with new capabilities (e.g., automated hint-set discovery) to minimize integration effort and facilitate usability in both monolithic and disaggregated SQL systems. We successfully applied AutoSteer on PostgreSQL, PrestoDB, Spark-SQL, MySQL, and DuckDB - five popular open-source database engines with diverse query optimizers. We then conducted a detailed experimental evaluation with public benchmarks (JOB, Stackoverflow, TPC-DS) and a production workload from Meta's PrestoDB deployments. Our evaluation shows that AutoSteer can not only outperform these engines' native query optimizers (e.g., up to 40% improvements for PrestoDB) but can also match the performance of Bao-for-PostgreSQL with reduced human supervision and increased adaptivity, as it replaces Bao's static, expert-picked hint-sets with those that are automatically discovered. We also provide an open-source implementation of AutoSteer together with a visual tool for interactive use by query optimization experts.","PeriodicalId":54220,"journal":{"name":"Proceedings of the Vldb Endowment","volume":"82 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"AutoSteer: Learned Query Optimization for Any SQL Database\",\"authors\":\"Christoph Anneser, Nesime Tatbul, David Cohen, Zhenggang Xu, Prithviraj Pandian, Nikolay Laptev, Ryan Marcus\",\"doi\":\"10.14778/3611540.3611544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents AutoSteer, a learning-based solution that automatically drives query optimization in any SQL database that exposes tunable optimizer knobs. AutoSteer builds on the Bandit optimizer (Bao) and extends it with new capabilities (e.g., automated hint-set discovery) to minimize integration effort and facilitate usability in both monolithic and disaggregated SQL systems. We successfully applied AutoSteer on PostgreSQL, PrestoDB, Spark-SQL, MySQL, and DuckDB - five popular open-source database engines with diverse query optimizers. We then conducted a detailed experimental evaluation with public benchmarks (JOB, Stackoverflow, TPC-DS) and a production workload from Meta's PrestoDB deployments. Our evaluation shows that AutoSteer can not only outperform these engines' native query optimizers (e.g., up to 40% improvements for PrestoDB) but can also match the performance of Bao-for-PostgreSQL with reduced human supervision and increased adaptivity, as it replaces Bao's static, expert-picked hint-sets with those that are automatically discovered. We also provide an open-source implementation of AutoSteer together with a visual tool for interactive use by query optimization experts.\",\"PeriodicalId\":54220,\"journal\":{\"name\":\"Proceedings of the Vldb Endowment\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Vldb Endowment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14778/3611540.3611544\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Vldb Endowment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14778/3611540.3611544","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了AutoSteer,这是一种基于学习的解决方案,可以在任何SQL数据库中自动驱动可调优化器旋钮的查询优化。AutoSteer建立在Bandit优化器(Bao)的基础上,并扩展了它的新功能(例如,自动提示集发现),以最大限度地减少集成工作,并促进单片和分解SQL系统的可用性。我们成功地将AutoSteer应用于PostgreSQL、PrestoDB、Spark-SQL、MySQL和DuckDB这五种流行的开源数据库引擎,它们具有不同的查询优化器。然后,我们使用公共基准测试(JOB、Stackoverflow、TPC-DS)和Meta PrestoDB部署的生产工作负载进行了详细的实验评估。我们的评估表明,AutoSteer不仅可以胜过这些引擎的原生查询优化器(例如,PrestoDB的性能提高了40%),而且还可以在减少人工监督和提高适应性的情况下与Bao for postgresql的性能相匹配,因为它用自动发现的提示集取代了Bao的静态、专家挑选的提示集。我们还提供了AutoSteer的开源实现以及一个可视化工具,供查询优化专家进行交互使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AutoSteer: Learned Query Optimization for Any SQL Database
This paper presents AutoSteer, a learning-based solution that automatically drives query optimization in any SQL database that exposes tunable optimizer knobs. AutoSteer builds on the Bandit optimizer (Bao) and extends it with new capabilities (e.g., automated hint-set discovery) to minimize integration effort and facilitate usability in both monolithic and disaggregated SQL systems. We successfully applied AutoSteer on PostgreSQL, PrestoDB, Spark-SQL, MySQL, and DuckDB - five popular open-source database engines with diverse query optimizers. We then conducted a detailed experimental evaluation with public benchmarks (JOB, Stackoverflow, TPC-DS) and a production workload from Meta's PrestoDB deployments. Our evaluation shows that AutoSteer can not only outperform these engines' native query optimizers (e.g., up to 40% improvements for PrestoDB) but can also match the performance of Bao-for-PostgreSQL with reduced human supervision and increased adaptivity, as it replaces Bao's static, expert-picked hint-sets with those that are automatically discovered. We also provide an open-source implementation of AutoSteer together with a visual tool for interactive use by query optimization experts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the Vldb Endowment
Proceedings of the Vldb Endowment Computer Science-General Computer Science
CiteScore
7.70
自引率
0.00%
发文量
95
期刊介绍: The Proceedings of the VLDB (PVLDB) welcomes original research papers on a broad range of research topics related to all aspects of data management, where systems issues play a significant role, such as data management system technology and information management infrastructures, including their very large scale of experimentation, novel architectures, and demanding applications as well as their underpinning theory. The scope of a submission for PVLDB is also described by the subject areas given below. Moreover, the scope of PVLDB is restricted to scientific areas that are covered by the combined expertise on the submission’s topic of the journal’s editorial board. Finally, the submission’s contributions should build on work already published in data management outlets, e.g., PVLDB, VLDBJ, ACM SIGMOD, IEEE ICDE, EDBT, ACM TODS, IEEE TKDE, and go beyond a syntactic citation.
期刊最新文献
Auditory Brainstem Response in a Child with Mitochondrial Disorder-Leigh Syndrome. Breathing New Life into an Old Tree: Resolving Logging Dilemma of B + -tree on Modern Computational Storage Drives QO-Insight: Inspecting Steered Query Optimizers A Learned Query Rewrite System Demonstrating ADOPT: Adaptively Optimizing Attribute Orders for Worst-Case Optimal Joins via Reinforcement Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1