具有竞争性抑制和底物输入的酶催化反应准稳态假设的有效性

A.-M. Mosneagu, I. Stolerii
{"title":"具有竞争性抑制和底物输入的酶催化反应准稳态假设的有效性","authors":"A.-M. Mosneagu, I. Stolerii","doi":"10.56082/annalsarscimath.2023.1-2.383","DOIUrl":null,"url":null,"abstract":"Enzyme-catalysed reactions are chemical reactions within cells in which the rate of the reaction is significantly increased through the action of enzymes. They are usually part of large and complex bio¬chemical networks, which form the central processing units of the living cell. Enzymatic reactions often operate on multiple time scales, which can be characterized as being either fast or slow. The quasi steady¬state approximation (QSSA) utilizes time scale separation to pro ject these complex models onto lower-dimensional slow manifolds. In this paper, we investigate the validity of a quasi steady-state assumption for enzyme-catalysed biochemical reactions with competitive inhibition that are subject to a constant substrate input. Necessary and sufficient conditions for the validity of these assumptions were derived and were shown to be dependent, among others, on the substrate input. The validity conditions are numerically verified using the classical Runge- Kutta method.","PeriodicalId":38807,"journal":{"name":"Annals of the Academy of Romanian Scientists: Series on Mathematics and its Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VALIDITY OF THE QUASI STEADY STATE ASSUMPTION FOR ENZYME-CATALYSED REACTIONS WITH COMPETITIVE INHIBITION AND SUBSTRATE INPUT\",\"authors\":\"A.-M. Mosneagu, I. Stolerii\",\"doi\":\"10.56082/annalsarscimath.2023.1-2.383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Enzyme-catalysed reactions are chemical reactions within cells in which the rate of the reaction is significantly increased through the action of enzymes. They are usually part of large and complex bio¬chemical networks, which form the central processing units of the living cell. Enzymatic reactions often operate on multiple time scales, which can be characterized as being either fast or slow. The quasi steady¬state approximation (QSSA) utilizes time scale separation to pro ject these complex models onto lower-dimensional slow manifolds. In this paper, we investigate the validity of a quasi steady-state assumption for enzyme-catalysed biochemical reactions with competitive inhibition that are subject to a constant substrate input. Necessary and sufficient conditions for the validity of these assumptions were derived and were shown to be dependent, among others, on the substrate input. The validity conditions are numerically verified using the classical Runge- Kutta method.\",\"PeriodicalId\":38807,\"journal\":{\"name\":\"Annals of the Academy of Romanian Scientists: Series on Mathematics and its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of the Academy of Romanian Scientists: Series on Mathematics and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56082/annalsarscimath.2023.1-2.383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Academy of Romanian Scientists: Series on Mathematics and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56082/annalsarscimath.2023.1-2.383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

酶催化反应是细胞内通过酶的作用使反应速率显著提高的化学反应。它们通常是庞大而复杂的生化网络的一部分,构成了活细胞的中央处理单元。酶促反应通常在多个时间尺度上进行,其特征可以是快或慢。准稳态近似(QSSA)利用时间尺度分离将这些复杂模型投影到低维慢流形上。在本文中,我们研究了具有竞争抑制的酶催化生化反应准稳态假设的有效性,这些反应受到恒定的底物输入。这些假设的有效性的必要和充分条件被导出,并被证明是依赖于,除其他外,底物的输入。采用经典的龙格-库塔方法对其有效性条件进行了数值验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
VALIDITY OF THE QUASI STEADY STATE ASSUMPTION FOR ENZYME-CATALYSED REACTIONS WITH COMPETITIVE INHIBITION AND SUBSTRATE INPUT
Enzyme-catalysed reactions are chemical reactions within cells in which the rate of the reaction is significantly increased through the action of enzymes. They are usually part of large and complex bio¬chemical networks, which form the central processing units of the living cell. Enzymatic reactions often operate on multiple time scales, which can be characterized as being either fast or slow. The quasi steady¬state approximation (QSSA) utilizes time scale separation to pro ject these complex models onto lower-dimensional slow manifolds. In this paper, we investigate the validity of a quasi steady-state assumption for enzyme-catalysed biochemical reactions with competitive inhibition that are subject to a constant substrate input. Necessary and sufficient conditions for the validity of these assumptions were derived and were shown to be dependent, among others, on the substrate input. The validity conditions are numerically verified using the classical Runge- Kutta method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
25 weeks
期刊介绍: The journal Mathematics and Its Applications is part of the Annals of the Academy of Romanian Scientists (ARS), in which several series are published. Although the Academy is almost one century old, due to the historical conditions after WW2 in Eastern Europe, it is just starting with 2006 that the Annals are published. The Editor-in-Chief of the Annals is the President of ARS, Prof. Dr. V. Candea and Academician A.E. Sandulescu (†) is his deputy for this domain. Mathematics and Its Applications invites publication of contributed papers, short notes, survey articles and reviews, with a novel and correct content, in any area of mathematics and its applications. Short notes are published with priority on the recommendation of one of the members of the Editorial Board and should be 3-6 pages long. They may not include proofs, but supplementary materials supporting all the statements are required and will be archivated. The authors are encouraged to publish the extended version of the short note, elsewhere. All received articles will be submitted to a blind peer review process. Mathematics and Its Applications has an Open Access policy: all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. No submission or processing fees are required. Targeted topics include : Ordinary and partial differential equations Optimization, optimal control and design Numerical Analysis and scientific computing Algebraic, topological and differential structures Probability and statistics Algebraic and differential geometry Mathematical modelling in mechanics and engineering sciences Mathematical economy and game theory Mathematical physics and applications.
期刊最新文献
SEVERAL VARIATIONAL INCLUSIONS FOR A FRACTIONAL DIFFERENTIAL INCLUSION OF CAPUTO-FABRIZIO TYPE PARTIAL STABILITY IN A MODEL FOR ALLERGIC REACTIONS INDUCED BY CHEMOTHERAPY OF ACUTE LYMPHOBLASTIC LEUKEMIA ON THE EQUILIBRIUM EQUATIONS OF LINEAR 6-PARAMETER ELASTIC SHELLS STATIC OUTPUT FEEDBACK CONTROL OF LINEAR PARAMETER VARYING SYSTEMS VALIDITY OF THE QUASI STEADY STATE ASSUMPTION FOR ENZYME-CATALYSED REACTIONS WITH COMPETITIVE INHIBITION AND SUBSTRATE INPUT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1