双曲型引力源的解析模型

IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS International Journal of Modern Physics D Pub Date : 2023-11-01 DOI:10.1142/s021827182350089x
Z. Yousaf, M. Z. Bhattti, H. Asad
{"title":"双曲型引力源的解析模型","authors":"Z. Yousaf, M. Z. Bhattti, H. Asad","doi":"10.1142/s021827182350089x","DOIUrl":null,"url":null,"abstract":"This paper aims to conduct an extensive examination of hyperbolically symmetrical static fluid distributions, wherein a precise analysis of their physical characteristics is carried out in the background of modified [Formula: see text] gravity, where [Formula: see text] and [Formula: see text] stands for Gauss Bonnet invariant and energy-momentum trace, respectively. The outcomes reveal that the energy density exhibits negative value, thus implying that any utilization of such fluids necessitates extremely demanding circumstances where quantum effects would be significantly influential. Furthermore, it has been determined that these fluid distributions cannot take the vicinity surrounding their central point of symmetry and leave behind an empty vacuum cavity in its place. Additionally, an appropriate definition for mass function and the complexity factor is determined. Eventually, we exhibit a broad strategy for accomplishing particular solutions and showcase several instances of exact analytical solutions in the presence of [Formula: see text] correction terms.","PeriodicalId":50307,"journal":{"name":"International Journal of Modern Physics D","volume":"162 ","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical Models of Hyperbolical Gravitational Sources\",\"authors\":\"Z. Yousaf, M. Z. Bhattti, H. Asad\",\"doi\":\"10.1142/s021827182350089x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to conduct an extensive examination of hyperbolically symmetrical static fluid distributions, wherein a precise analysis of their physical characteristics is carried out in the background of modified [Formula: see text] gravity, where [Formula: see text] and [Formula: see text] stands for Gauss Bonnet invariant and energy-momentum trace, respectively. The outcomes reveal that the energy density exhibits negative value, thus implying that any utilization of such fluids necessitates extremely demanding circumstances where quantum effects would be significantly influential. Furthermore, it has been determined that these fluid distributions cannot take the vicinity surrounding their central point of symmetry and leave behind an empty vacuum cavity in its place. Additionally, an appropriate definition for mass function and the complexity factor is determined. Eventually, we exhibit a broad strategy for accomplishing particular solutions and showcase several instances of exact analytical solutions in the presence of [Formula: see text] correction terms.\",\"PeriodicalId\":50307,\"journal\":{\"name\":\"International Journal of Modern Physics D\",\"volume\":\"162 \",\"pages\":\"0\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Modern Physics D\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s021827182350089x\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s021827182350089x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在对双曲对称静态流体分布进行广泛的考察,其中在修正[公式:见文]重力背景下对其物理特性进行了精确的分析,其中[公式:见文]和[公式:见文]分别代表高斯博内不变量和能量动量迹。结果表明,能量密度呈现负值,这意味着任何对此类流体的利用都必须在量子效应具有显著影响的极其苛刻的环境中进行。此外,已经确定,这些流体分布不能取其对称中心点周围的邻近区域,而在其位置留下一个空的真空腔。此外,还确定了质量函数和复杂度因子的适当定义。最后,我们展示了实现特定解的广泛策略,并展示了在[公式:见文本]校正项存在下的精确解析解的几个实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analytical Models of Hyperbolical Gravitational Sources
This paper aims to conduct an extensive examination of hyperbolically symmetrical static fluid distributions, wherein a precise analysis of their physical characteristics is carried out in the background of modified [Formula: see text] gravity, where [Formula: see text] and [Formula: see text] stands for Gauss Bonnet invariant and energy-momentum trace, respectively. The outcomes reveal that the energy density exhibits negative value, thus implying that any utilization of such fluids necessitates extremely demanding circumstances where quantum effects would be significantly influential. Furthermore, it has been determined that these fluid distributions cannot take the vicinity surrounding their central point of symmetry and leave behind an empty vacuum cavity in its place. Additionally, an appropriate definition for mass function and the complexity factor is determined. Eventually, we exhibit a broad strategy for accomplishing particular solutions and showcase several instances of exact analytical solutions in the presence of [Formula: see text] correction terms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Modern Physics D
International Journal of Modern Physics D 地学天文-天文与天体物理
CiteScore
3.80
自引率
9.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Gravitation, astrophysics and cosmology are exciting and rapidly advancing fields of research. This journal aims to accommodate and promote this expansion of information and ideas and it features research papers and reviews on theoretical, observational and experimental findings in these fields. Among the topics covered are general relativity, quantum gravity, gravitational experiments, quantum cosmology, observational cosmology, particle cosmology, large scale structure, high energy astrophysics, compact objects, cosmic particles and radiation.
期刊最新文献
Some specific wormhole solutions in extended f(R,G,T) gravity Dark energy based on exotic statistics Rotating regular black holes and other compact objects with a Tolman-type potential as a regular interior for the Kerr metric Numerical analyses of M31 dark matter profiles Qualitative probe of interacting dark energy with redshift-space distortions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1