基于kpca - wphm - scns的电机滚动轴承剩余使用寿命预测方法

IF 1.7 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS Transactions of the Institute of Measurement and Control Pub Date : 2023-09-19 DOI:10.1177/01423312231191569
Ying Han, Xinping Song, Jinmei Shi, Kun Li
{"title":"基于kpca - wphm - scns的电机滚动轴承剩余使用寿命预测方法","authors":"Ying Han, Xinping Song, Jinmei Shi, Kun Li","doi":"10.1177/01423312231191569","DOIUrl":null,"url":null,"abstract":"Motor rolling bearings are the important supporting components of motors. It can ensure the stable operation of motor equipment in the power grid, and bearing life prediction of it is a key issue. To solve the problem of low accuracy of remaining useful life (RUL) prediction for motor rolling bearings, a neural network model based on Weibull proportional hazards model (WPHM) and stochastic configuration networks (SCNs) is proposed. To better extract and analyze features of the bearing vibration signal in both time and frequency domains, kernel principal component analysis (KPCA) is used to reduce the dimensionality of the data. Then, a WPHM model using the top three contributing feature parameters is built, which sets the start time based on the failure rate curve and reliability function. Finally, the validity of the model is verified with the rolling bearing full life cycle dataset from the IEEE PHM 2012 Data Challenge, and a comparison with other machine learning models shows that the accuracy of the proposed model in RUL prediction is higher.","PeriodicalId":49426,"journal":{"name":"Transactions of the Institute of Measurement and Control","volume":"28 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"KPCA-WPHM-SCNs-based remaining useful life prediction method for motor rolling bearings\",\"authors\":\"Ying Han, Xinping Song, Jinmei Shi, Kun Li\",\"doi\":\"10.1177/01423312231191569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motor rolling bearings are the important supporting components of motors. It can ensure the stable operation of motor equipment in the power grid, and bearing life prediction of it is a key issue. To solve the problem of low accuracy of remaining useful life (RUL) prediction for motor rolling bearings, a neural network model based on Weibull proportional hazards model (WPHM) and stochastic configuration networks (SCNs) is proposed. To better extract and analyze features of the bearing vibration signal in both time and frequency domains, kernel principal component analysis (KPCA) is used to reduce the dimensionality of the data. Then, a WPHM model using the top three contributing feature parameters is built, which sets the start time based on the failure rate curve and reliability function. Finally, the validity of the model is verified with the rolling bearing full life cycle dataset from the IEEE PHM 2012 Data Challenge, and a comparison with other machine learning models shows that the accuracy of the proposed model in RUL prediction is higher.\",\"PeriodicalId\":49426,\"journal\":{\"name\":\"Transactions of the Institute of Measurement and Control\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Institute of Measurement and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/01423312231191569\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Institute of Measurement and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/01423312231191569","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

电机滚动轴承是电机的重要支承部件。它可以保证电网中电机设备的稳定运行,其轴承寿命预测是一个关键问题。针对电机滚动轴承剩余使用寿命预测精度低的问题,提出了一种基于威布尔比例风险模型(WPHM)和随机配置网络(SCNs)的神经网络模型。为了更好地提取和分析轴承振动信号的时频特征,采用核主成分分析(KPCA)对数据进行降维处理。然后,利用前3个贡献特征参数建立WPHM模型,根据故障率曲线和可靠性函数设定启动时间;最后,利用IEEE PHM 2012数据挑战赛的滚动轴承全生命周期数据集验证了该模型的有效性,并与其他机器学习模型进行了比较,结果表明该模型在RUL预测中的准确性更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
KPCA-WPHM-SCNs-based remaining useful life prediction method for motor rolling bearings
Motor rolling bearings are the important supporting components of motors. It can ensure the stable operation of motor equipment in the power grid, and bearing life prediction of it is a key issue. To solve the problem of low accuracy of remaining useful life (RUL) prediction for motor rolling bearings, a neural network model based on Weibull proportional hazards model (WPHM) and stochastic configuration networks (SCNs) is proposed. To better extract and analyze features of the bearing vibration signal in both time and frequency domains, kernel principal component analysis (KPCA) is used to reduce the dimensionality of the data. Then, a WPHM model using the top three contributing feature parameters is built, which sets the start time based on the failure rate curve and reliability function. Finally, the validity of the model is verified with the rolling bearing full life cycle dataset from the IEEE PHM 2012 Data Challenge, and a comparison with other machine learning models shows that the accuracy of the proposed model in RUL prediction is higher.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
16.70%
发文量
203
审稿时长
3.4 months
期刊介绍: Transactions of the Institute of Measurement and Control is a fully peer-reviewed international journal. The journal covers all areas of applications in instrumentation and control. Its scope encompasses cutting-edge research and development, education and industrial applications.
期刊最新文献
Quantized guaranteed cost dynamic output feedback control for uncertain nonlinear networked systems with external disturbance Event-triggered control of switched 2D continuous-discrete systems Prescribed-time leader-following consensus and containment control for second-order multiagent systems with only position measurements Distributed nonsingular terminal sliding mode control–based RBFNN for heterogeneous vehicular platoons with input saturation Event-triggered adaptive command-filtered trajectory tracking control for underactuated surface vessels based on multivariate finite-time disturbance observer under actuator faults and input saturation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1