ALEXANDRA HELLWIG, STEFFEN TRÜMPER, RONNY RÖßLER, MICHAEL KRINGS
{"title":"德国图林根森林盆地manebach早二叠纪湿地淡水叠层石:结构、发育和古环境背景","authors":"ALEXANDRA HELLWIG, STEFFEN TRÜMPER, RONNY RÖßLER, MICHAEL KRINGS","doi":"10.2110/palo.2022.049","DOIUrl":null,"url":null,"abstract":"Abstract Fossil stromatolites enclosing structurally preserved land plant remains have rarely been documented and studied in detail. Permineralized woody Tylodendron sp. conifer axes (slender stems, branches) from a lacustrine sedimentary sequence in the lower Permian fossil Lagerstätte of Manebach (Thuringian-Forest Basin, central Germany) are frequently surrounded by stromatolites that consist of successive, usually asymmetrical microbial layers. The stromatolites show various growth forms ranging from laminar to palisadic. They developed in stagnant water from microbial overgrowth dominated by slender, unbranched sessile cyanobacterial filaments aligned vertically into tufts or turf-like stands. Interspersed among the filaments were other filamentous and coccoid microorganisms. Preservation of the Tylodendron axes can be exquisite and sometimes even includes extraxylary tissues containing remains of fungi, suggesting that stromatolite formation began soon after the axes had entered the water and were perhaps even conducive to their preservation. Structurally similar fossil microbialitic structures from elsewhere likewise demonstrate that they were effective in preserving plant morphology. The Manebach stromatolites and the plant remains they contain contribute to a more accurate understanding of the complex biological processes in late Paleozoic lake ecosystems.","PeriodicalId":54647,"journal":{"name":"Palaios","volume":"28 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FRESHWATER STROMATOLITES FROM AN EARLY PERMIAN WETLAND (MANEBACH, THURINGIAN-FOREST BASIN, GERMANY): STRUCTURE, DEVELOPMENT, AND PALEOENVIRONMENTAL CONTEXT\",\"authors\":\"ALEXANDRA HELLWIG, STEFFEN TRÜMPER, RONNY RÖßLER, MICHAEL KRINGS\",\"doi\":\"10.2110/palo.2022.049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Fossil stromatolites enclosing structurally preserved land plant remains have rarely been documented and studied in detail. Permineralized woody Tylodendron sp. conifer axes (slender stems, branches) from a lacustrine sedimentary sequence in the lower Permian fossil Lagerstätte of Manebach (Thuringian-Forest Basin, central Germany) are frequently surrounded by stromatolites that consist of successive, usually asymmetrical microbial layers. The stromatolites show various growth forms ranging from laminar to palisadic. They developed in stagnant water from microbial overgrowth dominated by slender, unbranched sessile cyanobacterial filaments aligned vertically into tufts or turf-like stands. Interspersed among the filaments were other filamentous and coccoid microorganisms. Preservation of the Tylodendron axes can be exquisite and sometimes even includes extraxylary tissues containing remains of fungi, suggesting that stromatolite formation began soon after the axes had entered the water and were perhaps even conducive to their preservation. Structurally similar fossil microbialitic structures from elsewhere likewise demonstrate that they were effective in preserving plant morphology. The Manebach stromatolites and the plant remains they contain contribute to a more accurate understanding of the complex biological processes in late Paleozoic lake ecosystems.\",\"PeriodicalId\":54647,\"journal\":{\"name\":\"Palaios\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Palaios\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2110/palo.2022.049\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Palaios","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2110/palo.2022.049","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOLOGY","Score":null,"Total":0}
FRESHWATER STROMATOLITES FROM AN EARLY PERMIAN WETLAND (MANEBACH, THURINGIAN-FOREST BASIN, GERMANY): STRUCTURE, DEVELOPMENT, AND PALEOENVIRONMENTAL CONTEXT
Abstract Fossil stromatolites enclosing structurally preserved land plant remains have rarely been documented and studied in detail. Permineralized woody Tylodendron sp. conifer axes (slender stems, branches) from a lacustrine sedimentary sequence in the lower Permian fossil Lagerstätte of Manebach (Thuringian-Forest Basin, central Germany) are frequently surrounded by stromatolites that consist of successive, usually asymmetrical microbial layers. The stromatolites show various growth forms ranging from laminar to palisadic. They developed in stagnant water from microbial overgrowth dominated by slender, unbranched sessile cyanobacterial filaments aligned vertically into tufts or turf-like stands. Interspersed among the filaments were other filamentous and coccoid microorganisms. Preservation of the Tylodendron axes can be exquisite and sometimes even includes extraxylary tissues containing remains of fungi, suggesting that stromatolite formation began soon after the axes had entered the water and were perhaps even conducive to their preservation. Structurally similar fossil microbialitic structures from elsewhere likewise demonstrate that they were effective in preserving plant morphology. The Manebach stromatolites and the plant remains they contain contribute to a more accurate understanding of the complex biological processes in late Paleozoic lake ecosystems.
期刊介绍:
PALAIOS is a monthly journal, founded in 1986, dedicated to emphasizing the impact of life on Earth''s history as recorded in the paleontological and sedimentological records. PALAIOS disseminates information to an international spectrum of geologists and biologists interested in a broad range of topics, including, but not limited to, biogeochemistry, ichnology, paleoclimatology, paleoecology, paleoceanography, sedimentology, stratigraphy, geomicrobiology, paleobiogeochemistry, and astrobiology.
PALAIOS publishes original papers that emphasize using paleontology to answer important geological and biological questions that further our understanding of Earth history. Accordingly, manuscripts whose subject matter and conclusions have broader geologic implications are much more likely to be selected for publication. Given that the purpose of PALAIOS is to generate enthusiasm for paleontology among a broad spectrum of readers, the editors request the following: titles that generate immediate interest; abstracts that emphasize important conclusions; illustrations of professional caliber used in place of words; and lively, yet scholarly, text.