粘度和表面张力对微液滴动力学的数值分析在微机电系统中的应用

Somaiyeh Alizadeh, Razieh Abbasgholi Rezaei
{"title":"粘度和表面张力对微液滴动力学的数值分析在微机电系统中的应用","authors":"Somaiyeh Alizadeh, Razieh Abbasgholi Rezaei","doi":"10.56578/jii010303","DOIUrl":null,"url":null,"abstract":"Microelectromechanical systems (MEMS) have instigated transformative advancements, notably in controlled microdroplet generation, offering applications across diverse industrial sectors. Precise control of fluid quantities at microscales has emerged as pivotal for myriad fields, from microfluidics to biomedical engineering. In this investigation, the impacts of fluid viscosity and surface tension on microdroplet formation were meticulously studied. For this purpose, a microdispenser, actuated piezoelectrically and fitted with an 18-micrometer diameter nozzle, was employed. This setup facilitated precise fluid manipulation, enabling a systematic study of fluid behavior during droplet creation. Three fluids, specifically water, ink, and ethanol, were examined to decipher the influences of their inherent properties on microdroplet generation. Emphasis was laid on both primary and satellite droplets due to their direct implications in industrial applications. Observations revealed that fluids with elevated surface tension and diminished viscosity yielded larger microdroplets. Conversely, fluids manifesting greater surface tension underwent rapid breakup upon ejection, culminating in the genesis of several diminutive droplets. Such findings underscore the intricate relationship between fluid properties and droplet formation dynamics. This newly acquired understanding holds the potential to guide MEMS device design, ensuring the desired droplet size and distribution. Furthermore, these insights are poised to facilitate optimal microdispenser design and judicious fluid selection for applications spanning inkjet printing, microreactors, and drug delivery mechanisms.","PeriodicalId":293379,"journal":{"name":"Journal of Industrial Intelligence","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Analysis of Viscosity and Surface Tension on Microdroplet Dynamics in Microelectromechanical Systems Applications\",\"authors\":\"Somaiyeh Alizadeh, Razieh Abbasgholi Rezaei\",\"doi\":\"10.56578/jii010303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microelectromechanical systems (MEMS) have instigated transformative advancements, notably in controlled microdroplet generation, offering applications across diverse industrial sectors. Precise control of fluid quantities at microscales has emerged as pivotal for myriad fields, from microfluidics to biomedical engineering. In this investigation, the impacts of fluid viscosity and surface tension on microdroplet formation were meticulously studied. For this purpose, a microdispenser, actuated piezoelectrically and fitted with an 18-micrometer diameter nozzle, was employed. This setup facilitated precise fluid manipulation, enabling a systematic study of fluid behavior during droplet creation. Three fluids, specifically water, ink, and ethanol, were examined to decipher the influences of their inherent properties on microdroplet generation. Emphasis was laid on both primary and satellite droplets due to their direct implications in industrial applications. Observations revealed that fluids with elevated surface tension and diminished viscosity yielded larger microdroplets. Conversely, fluids manifesting greater surface tension underwent rapid breakup upon ejection, culminating in the genesis of several diminutive droplets. Such findings underscore the intricate relationship between fluid properties and droplet formation dynamics. This newly acquired understanding holds the potential to guide MEMS device design, ensuring the desired droplet size and distribution. Furthermore, these insights are poised to facilitate optimal microdispenser design and judicious fluid selection for applications spanning inkjet printing, microreactors, and drug delivery mechanisms.\",\"PeriodicalId\":293379,\"journal\":{\"name\":\"Journal of Industrial Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56578/jii010303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56578/jii010303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

微机电系统(MEMS)已经推动了变革性的进步,特别是在受控微滴生成方面,为不同的工业部门提供了应用。从微流体到生物医学工程,在微尺度上精确控制流体量已经成为无数领域的关键。研究了流体粘度和表面张力对微液滴形成的影响。为此,采用了一个压电驱动的微型分配器,并配有直径为18微米的喷嘴。这种设置有助于精确的流体操作,从而能够系统地研究液滴形成过程中的流体行为。三种流体,特别是水、墨水和乙醇,被检查以破译其固有特性对微液滴产生的影响。重点放在初级液滴和卫星液滴上,因为它们在工业应用中的直接影响。观察结果显示,表面张力升高、粘度降低的流体产生了更大的微液滴。相反,表面张力较大的流体在喷射时迅速破裂,最终形成几个小液滴。这些发现强调了流体性质和液滴形成动力学之间的复杂关系。这一新获得的理解具有指导MEMS器件设计的潜力,确保所需的液滴尺寸和分布。此外,这些见解将有助于喷墨打印、微反应器和药物输送机制等应用的最佳微分配器设计和明智的流体选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical Analysis of Viscosity and Surface Tension on Microdroplet Dynamics in Microelectromechanical Systems Applications
Microelectromechanical systems (MEMS) have instigated transformative advancements, notably in controlled microdroplet generation, offering applications across diverse industrial sectors. Precise control of fluid quantities at microscales has emerged as pivotal for myriad fields, from microfluidics to biomedical engineering. In this investigation, the impacts of fluid viscosity and surface tension on microdroplet formation were meticulously studied. For this purpose, a microdispenser, actuated piezoelectrically and fitted with an 18-micrometer diameter nozzle, was employed. This setup facilitated precise fluid manipulation, enabling a systematic study of fluid behavior during droplet creation. Three fluids, specifically water, ink, and ethanol, were examined to decipher the influences of their inherent properties on microdroplet generation. Emphasis was laid on both primary and satellite droplets due to their direct implications in industrial applications. Observations revealed that fluids with elevated surface tension and diminished viscosity yielded larger microdroplets. Conversely, fluids manifesting greater surface tension underwent rapid breakup upon ejection, culminating in the genesis of several diminutive droplets. Such findings underscore the intricate relationship between fluid properties and droplet formation dynamics. This newly acquired understanding holds the potential to guide MEMS device design, ensuring the desired droplet size and distribution. Furthermore, these insights are poised to facilitate optimal microdispenser design and judicious fluid selection for applications spanning inkjet printing, microreactors, and drug delivery mechanisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the Impact of Artificial Intelligence Integration on Cybersecurity: A Comprehensive Analysis Fuzzy Logic-Based Fault Detection in Industrial Production Systems: A Case Study Numerical Analysis of Two-Phase Flow in Serrated Minichannels Using COMSOL Multiphysics Advanced Technologies in Smart Factories: A Cornerstone of Industry 4.0 Numerical Analysis of Viscosity and Surface Tension on Microdroplet Dynamics in Microelectromechanical Systems Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1