汽轮机电物理过程的综合研究

Anatolii O. Tarelin, Oleh Weres
{"title":"汽轮机电物理过程的综合研究","authors":"Anatolii O. Tarelin, Oleh Weres","doi":"10.15407/pmach2023.03.033","DOIUrl":null,"url":null,"abstract":"The paper deals with comprehensive research in the field of electrization of wet steam flow in a turbine. The experience of the conducted studies on laboratory stands and full-scale objects (CHP and TPP) in Ukraine and the USA is introduced and generalized. It was shown that in the process of steam electrization, the charge density in the flow can reach very high values (an order of magnitude appears to be higher than in a thundercloud), and this phenomenon mainly has a negative effect on the turbine operation. Statistical data on the charge formation of the steam flow in the low-pressure cylinder of the turbine are presented. Results of the research to establish the main electrophysical factors of influence on the surface strength of the blade, such as electric fields, charge density and their polarity, are presented. The research results showed that such factors as the presence of a positively charged steam flow, constant and variable electric fields, which were most often recorded at operating turbines of CHPs and TPPs, significantly (by two or more times) intensify erosion-corrosion processes on the metal surfaces of the blades, thus reducing their working resource. Thermodynamic processes are studied both under conditions of natural electrification of a high-speed flow, which reduce the efficiency by about 0.3–0.35%, and under the influence of artificially created electric charges, which make it possible to increase the efficiency of the steam expansion process in the turbine by 2 or more percent. Various options of local input of electrical energy for steam ionization in the turbine are considered. At the same time, it is noted that for the practical implementation of these approaches, further careful design improvements and tests on model and full-scale installations are required. Water chemistry regimes are also considered in the context of their influence on the flow charge formation process, as well as on reliability and efficiency indicators of the turbine. Experimentally at an 800 MW turbine plant in the USA, it was shown that a change in the pH of the medium affects the intensity and polarity of the charge formation of the steam flow. The paper introduces the physical features of this phenomenon and notes the importance of these processes influence on the strength characteristics of the blades. Information on new methods and technologies that could lead to an increase in the operational efficiency and reliability of wet steam turbines, such as methods for input and removal of electrical energy into the flow; rational choice of water chemistry regimes; space charge neutralization, etc., is provided. These comprehensive electrophysical studies, considered in conjunction with thermal processes, can be characterized as a new scientific direction in the theory of steam turbines – thermal electrophysics.","PeriodicalId":16332,"journal":{"name":"Journal of Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated Studies of Electrophysical Processes in Steam Turbines\",\"authors\":\"Anatolii O. Tarelin, Oleh Weres\",\"doi\":\"10.15407/pmach2023.03.033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper deals with comprehensive research in the field of electrization of wet steam flow in a turbine. The experience of the conducted studies on laboratory stands and full-scale objects (CHP and TPP) in Ukraine and the USA is introduced and generalized. It was shown that in the process of steam electrization, the charge density in the flow can reach very high values (an order of magnitude appears to be higher than in a thundercloud), and this phenomenon mainly has a negative effect on the turbine operation. Statistical data on the charge formation of the steam flow in the low-pressure cylinder of the turbine are presented. Results of the research to establish the main electrophysical factors of influence on the surface strength of the blade, such as electric fields, charge density and their polarity, are presented. The research results showed that such factors as the presence of a positively charged steam flow, constant and variable electric fields, which were most often recorded at operating turbines of CHPs and TPPs, significantly (by two or more times) intensify erosion-corrosion processes on the metal surfaces of the blades, thus reducing their working resource. Thermodynamic processes are studied both under conditions of natural electrification of a high-speed flow, which reduce the efficiency by about 0.3–0.35%, and under the influence of artificially created electric charges, which make it possible to increase the efficiency of the steam expansion process in the turbine by 2 or more percent. Various options of local input of electrical energy for steam ionization in the turbine are considered. At the same time, it is noted that for the practical implementation of these approaches, further careful design improvements and tests on model and full-scale installations are required. Water chemistry regimes are also considered in the context of their influence on the flow charge formation process, as well as on reliability and efficiency indicators of the turbine. Experimentally at an 800 MW turbine plant in the USA, it was shown that a change in the pH of the medium affects the intensity and polarity of the charge formation of the steam flow. The paper introduces the physical features of this phenomenon and notes the importance of these processes influence on the strength characteristics of the blades. Information on new methods and technologies that could lead to an increase in the operational efficiency and reliability of wet steam turbines, such as methods for input and removal of electrical energy into the flow; rational choice of water chemistry regimes; space charge neutralization, etc., is provided. These comprehensive electrophysical studies, considered in conjunction with thermal processes, can be characterized as a new scientific direction in the theory of steam turbines – thermal electrophysics.\",\"PeriodicalId\":16332,\"journal\":{\"name\":\"Journal of Mechanical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/pmach2023.03.033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/pmach2023.03.033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文对汽轮机湿蒸汽流的电气化问题进行了全面的研究。介绍和概括了乌克兰和美国在实验室展台和全尺寸物体(CHP和TPP)上进行研究的经验。结果表明,在蒸汽带电过程中,流动中的电荷密度可以达到非常高的值(比雷云中的电荷密度高一个数量级),这一现象主要对汽轮机的运行产生负面影响。给出了汽轮机低压缸内蒸汽流充注形成的统计数据。给出了影响叶片表面强度的主要电物理因素,如电场、电荷密度及其极性的研究结果。研究结果表明,热电联产和TPPs运行时最常记录的带正电的蒸汽流、恒定电场和变电场等因素,会显著(两倍或两倍以上)加剧叶片金属表面的侵蚀腐蚀过程,从而减少叶片的工作资源。热力学过程研究了两种情况,一种是在高速流动的自然带电条件下,这将使效率降低约0.3-0.35%;另一种是在人工产生电荷的影响下,这可能使涡轮中的蒸汽膨胀过程的效率提高2%或更多。考虑了汽轮机蒸汽电离电能局部输入的各种选择。同时指出,为了切实实施这些办法,需要进一步仔细改进设计,并对模型和全尺寸装置进行试验。还考虑了水化学机制对流动电荷形成过程的影响,以及对涡轮机可靠性和效率指标的影响。在美国一座800mw汽轮机厂进行的实验表明,介质pH值的变化会影响蒸汽流电荷形成的强度和极性。本文介绍了这种现象的物理特征,并指出了这些过程对叶片强度特性影响的重要性。有关可提高湿蒸汽轮机运行效率和可靠性的新方法和新技术的信息,例如将电能输入和排出流的方法;水化学机制的合理选择提供空间电荷中和等。这些综合电物理研究,结合热过程考虑,可以被描述为汽轮机理论的一个新的科学方向-热电物理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrated Studies of Electrophysical Processes in Steam Turbines
The paper deals with comprehensive research in the field of electrization of wet steam flow in a turbine. The experience of the conducted studies on laboratory stands and full-scale objects (CHP and TPP) in Ukraine and the USA is introduced and generalized. It was shown that in the process of steam electrization, the charge density in the flow can reach very high values (an order of magnitude appears to be higher than in a thundercloud), and this phenomenon mainly has a negative effect on the turbine operation. Statistical data on the charge formation of the steam flow in the low-pressure cylinder of the turbine are presented. Results of the research to establish the main electrophysical factors of influence on the surface strength of the blade, such as electric fields, charge density and their polarity, are presented. The research results showed that such factors as the presence of a positively charged steam flow, constant and variable electric fields, which were most often recorded at operating turbines of CHPs and TPPs, significantly (by two or more times) intensify erosion-corrosion processes on the metal surfaces of the blades, thus reducing their working resource. Thermodynamic processes are studied both under conditions of natural electrification of a high-speed flow, which reduce the efficiency by about 0.3–0.35%, and under the influence of artificially created electric charges, which make it possible to increase the efficiency of the steam expansion process in the turbine by 2 or more percent. Various options of local input of electrical energy for steam ionization in the turbine are considered. At the same time, it is noted that for the practical implementation of these approaches, further careful design improvements and tests on model and full-scale installations are required. Water chemistry regimes are also considered in the context of their influence on the flow charge formation process, as well as on reliability and efficiency indicators of the turbine. Experimentally at an 800 MW turbine plant in the USA, it was shown that a change in the pH of the medium affects the intensity and polarity of the charge formation of the steam flow. The paper introduces the physical features of this phenomenon and notes the importance of these processes influence on the strength characteristics of the blades. Information on new methods and technologies that could lead to an increase in the operational efficiency and reliability of wet steam turbines, such as methods for input and removal of electrical energy into the flow; rational choice of water chemistry regimes; space charge neutralization, etc., is provided. These comprehensive electrophysical studies, considered in conjunction with thermal processes, can be characterized as a new scientific direction in the theory of steam turbines – thermal electrophysics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mechanical Engineering
Journal of Mechanical Engineering Engineering-Mechanical Engineering
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
16 weeks
期刊介绍: Journal of Mechanical Engineering (formerly known as Journal of Faculty of Mechanical Engineering) or JMechE, is an international journal which provides a forum for researchers and academicians worldwide to publish the research findings and the educational methods they are engaged in. This Journal acts as a link for the mechanical engineering community for rapid dissemination of their academic pursuits. The journal is published twice a year, in June and December, which discusses the progress of Mechanical Engineering advancement.
期刊最新文献
Pengaruh Bentuk Permukaan Piston Rata (Flat) Dan Piston Cembung (Dome) Terhadap Performa Dan Emisi Gas Buang Pada Mesin Sport 200cc Pengembangan Acetylated Cellulose Nanofibers dari Microcrystalline Cellulose: Studi Perubahan Gugus Fungsi dan Indeks Kristalinitas melalui Asetilasi dan Nanofibrilasi Analisis Pengaruh Banjir Rob Terhadap Kualitas Air Tanah Di Kawasan Pesisir Selatan Puger Kabupaten Jember Akurasi Dimensi Komponen Multi-material Hasil Manufaktur Digital Light Processing (DLP) 3D Printing Sintesis dan Karakterisasi Nanosilika dari Limbah Silica Scaling PLTP Dieng Melalui Metode Alkali Fusion NaOH
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1