{"title":"fpga约束感知多技术近似高级综合","authors":"Marcos T. Leipnitz, Gabriel L. Nazar","doi":"10.1145/3624481","DOIUrl":null,"url":null,"abstract":"Numerous approximate computing (AC) techniques have been developed to reduce the design costs in error-resilient application domains, such as signal and multimedia processing, data mining, machine learning, and computer vision, to trade-off computation accuracy with area and power savings or performance improvements. Selecting adequate techniques for each application and optimization target is complex but crucial for high-quality results. In this context, Approximate High-Level Synthesis (AHLS) tools have been proposed to alleviate the burden of hand-crafting approximate circuits by automating the exploitation of AC techniques. However, such tools are typically tied to a specific approximation technique or a difficult-to-extend set of techniques whose exploitation is not fully automated or steered by optimization targets. Therefore, available AHLS tools overlook the benefits of expanding the design space by mixing diverse approximation techniques toward meeting specific design objectives with minimum error. In this work, we propose an AHLS design methodology for FPGAs that automatically identifies efficient combinations of multiple approximation techniques for different applications and design constraints. Compared to single-technique approaches, decreases of up to 30% in mean squared error and absolute increases of up to 6.5% in percentage accuracy were obtained for a set of image, video, signal processing and machine learning benchmarks.","PeriodicalId":49248,"journal":{"name":"ACM Transactions on Reconfigurable Technology and Systems","volume":"12 1","pages":"0"},"PeriodicalIF":3.1000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constraint-Aware Multi-Technique Approximate High-Level Synthesis for FPGAs\",\"authors\":\"Marcos T. Leipnitz, Gabriel L. Nazar\",\"doi\":\"10.1145/3624481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerous approximate computing (AC) techniques have been developed to reduce the design costs in error-resilient application domains, such as signal and multimedia processing, data mining, machine learning, and computer vision, to trade-off computation accuracy with area and power savings or performance improvements. Selecting adequate techniques for each application and optimization target is complex but crucial for high-quality results. In this context, Approximate High-Level Synthesis (AHLS) tools have been proposed to alleviate the burden of hand-crafting approximate circuits by automating the exploitation of AC techniques. However, such tools are typically tied to a specific approximation technique or a difficult-to-extend set of techniques whose exploitation is not fully automated or steered by optimization targets. Therefore, available AHLS tools overlook the benefits of expanding the design space by mixing diverse approximation techniques toward meeting specific design objectives with minimum error. In this work, we propose an AHLS design methodology for FPGAs that automatically identifies efficient combinations of multiple approximation techniques for different applications and design constraints. Compared to single-technique approaches, decreases of up to 30% in mean squared error and absolute increases of up to 6.5% in percentage accuracy were obtained for a set of image, video, signal processing and machine learning benchmarks.\",\"PeriodicalId\":49248,\"journal\":{\"name\":\"ACM Transactions on Reconfigurable Technology and Systems\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Reconfigurable Technology and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3624481\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Reconfigurable Technology and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3624481","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Constraint-Aware Multi-Technique Approximate High-Level Synthesis for FPGAs
Numerous approximate computing (AC) techniques have been developed to reduce the design costs in error-resilient application domains, such as signal and multimedia processing, data mining, machine learning, and computer vision, to trade-off computation accuracy with area and power savings or performance improvements. Selecting adequate techniques for each application and optimization target is complex but crucial for high-quality results. In this context, Approximate High-Level Synthesis (AHLS) tools have been proposed to alleviate the burden of hand-crafting approximate circuits by automating the exploitation of AC techniques. However, such tools are typically tied to a specific approximation technique or a difficult-to-extend set of techniques whose exploitation is not fully automated or steered by optimization targets. Therefore, available AHLS tools overlook the benefits of expanding the design space by mixing diverse approximation techniques toward meeting specific design objectives with minimum error. In this work, we propose an AHLS design methodology for FPGAs that automatically identifies efficient combinations of multiple approximation techniques for different applications and design constraints. Compared to single-technique approaches, decreases of up to 30% in mean squared error and absolute increases of up to 6.5% in percentage accuracy were obtained for a set of image, video, signal processing and machine learning benchmarks.
期刊介绍:
TRETS is the top journal focusing on research in, on, and with reconfigurable systems and on their underlying technology. The scope, rationale, and coverage by other journals are often limited to particular aspects of reconfigurable technology or reconfigurable systems. TRETS is a journal that covers reconfigurability in its own right.
Topics that would be appropriate for TRETS would include all levels of reconfigurable system abstractions and all aspects of reconfigurable technology including platforms, programming environments and application successes that support these systems for computing or other applications.
-The board and systems architectures of a reconfigurable platform.
-Programming environments of reconfigurable systems, especially those designed for use with reconfigurable systems that will lead to increased programmer productivity.
-Languages and compilers for reconfigurable systems.
-Logic synthesis and related tools, as they relate to reconfigurable systems.
-Applications on which success can be demonstrated.
The underlying technology from which reconfigurable systems are developed. (Currently this technology is that of FPGAs, but research on the nature and use of follow-on technologies is appropriate for TRETS.)
In considering whether a paper is suitable for TRETS, the foremost question should be whether reconfigurability has been essential to success. Topics such as architecture, programming languages, compilers, and environments, logic synthesis, and high performance applications are all suitable if the context is appropriate. For example, an architecture for an embedded application that happens to use FPGAs is not necessarily suitable for TRETS, but an architecture using FPGAs for which the reconfigurability of the FPGAs is an inherent part of the specifications (perhaps due to a need for re-use on multiple applications) would be appropriate for TRETS.