Amaily Akter, Ali Tan Kee Zuan, Susilawati Kasim, Adibah Mohd Amin, Zakry Fitri Ab Aziz, Noor Md Rahmatullah, Buraq Musa Sadeq, Sayma Serine Chompa, Md Ekhlasur Rahman
{"title":"植物促生菌与尿素处理土壤氮素动态研究","authors":"Amaily Akter, Ali Tan Kee Zuan, Susilawati Kasim, Adibah Mohd Amin, Zakry Fitri Ab Aziz, Noor Md Rahmatullah, Buraq Musa Sadeq, Sayma Serine Chompa, Md Ekhlasur Rahman","doi":"10.47836/pjst.31.6.20","DOIUrl":null,"url":null,"abstract":"The mineralization of urea fertilizer significantly impacts nitrogen movement in the soil. An incubation study was done on a lab scale basis to examine nitrogen dynamics in soil inoculated with plant growth-promoting bacteria (PGPB) supplemented with varying levels of nitrogen fertilizer in the form of urea (0% N, 25% N, 50% N, 75% N, and 100% N). In the present experiment, sandy clay loam soil was used and incubated for four weeks, and the concentrations of NH4+‒N and NO3–‒N were monitored using the destructive method (Kjeldahl) to determine the mineralization rate of urea. Results showed higher NH4+‒N (11.880 mg/kg mineralized with UPMRB9N50 treatment) and NO3–‒N (20.060 mg/kg mineralized with UPMRB9N50 treatment) concentrations in the bacteria-treated soil compared to the uninoculated control. Urea-N remains higher (0.0353% and 0.0253% from UPMRB9N50 treatment in the first and second weeks, respectively) in bacteria-treated soil during the first two weeks, then gradually becomes zero towards the end of the observing period. Nitrogen (N) leaching loss was lower in bacterial inoculated soil compared to the control, and the leaching loss of N was greater with the increased N fertilizer rates. Cumulative N leaching loss is higher (29.797 mg/kg) in 100% N-treated soil than in other treatments. The findings observed that the beneficial bacteria could enhance the N mineralization to make the nutrient available for the crop while, at the same time, reducing leaching losses of fertilizer when supplied with a minimum amount of chemical fertilizer, thereby saving the input cost and protecting the environment.","PeriodicalId":46234,"journal":{"name":"Pertanika Journal of Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nitrogen Dynamics in Soil Treated with Plant-Growth Promoting Bacteria and Urea Fertilizer\",\"authors\":\"Amaily Akter, Ali Tan Kee Zuan, Susilawati Kasim, Adibah Mohd Amin, Zakry Fitri Ab Aziz, Noor Md Rahmatullah, Buraq Musa Sadeq, Sayma Serine Chompa, Md Ekhlasur Rahman\",\"doi\":\"10.47836/pjst.31.6.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mineralization of urea fertilizer significantly impacts nitrogen movement in the soil. An incubation study was done on a lab scale basis to examine nitrogen dynamics in soil inoculated with plant growth-promoting bacteria (PGPB) supplemented with varying levels of nitrogen fertilizer in the form of urea (0% N, 25% N, 50% N, 75% N, and 100% N). In the present experiment, sandy clay loam soil was used and incubated for four weeks, and the concentrations of NH4+‒N and NO3–‒N were monitored using the destructive method (Kjeldahl) to determine the mineralization rate of urea. Results showed higher NH4+‒N (11.880 mg/kg mineralized with UPMRB9N50 treatment) and NO3–‒N (20.060 mg/kg mineralized with UPMRB9N50 treatment) concentrations in the bacteria-treated soil compared to the uninoculated control. Urea-N remains higher (0.0353% and 0.0253% from UPMRB9N50 treatment in the first and second weeks, respectively) in bacteria-treated soil during the first two weeks, then gradually becomes zero towards the end of the observing period. Nitrogen (N) leaching loss was lower in bacterial inoculated soil compared to the control, and the leaching loss of N was greater with the increased N fertilizer rates. Cumulative N leaching loss is higher (29.797 mg/kg) in 100% N-treated soil than in other treatments. The findings observed that the beneficial bacteria could enhance the N mineralization to make the nutrient available for the crop while, at the same time, reducing leaching losses of fertilizer when supplied with a minimum amount of chemical fertilizer, thereby saving the input cost and protecting the environment.\",\"PeriodicalId\":46234,\"journal\":{\"name\":\"Pertanika Journal of Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pertanika Journal of Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47836/pjst.31.6.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pertanika Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47836/pjst.31.6.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
尿素的矿化对土壤中氮的运动有显著影响。孵化研究是在实验室规模的基础上检查土壤中氮动力学和促进植物生长的细菌接种(PGPB)补充氮肥水平不同的形式的尿素(75% 50% 25% 0% N, N, N, N, N)和100%。在目前的实验中,砂质粘壤土土和孵化用于四个星期,和NH4 + - N和硝态氮的浓度监控使用破坏性的方法(凯氏)来确定尿素的矿化率。结果表明,与未接种的对照相比,细菌处理的土壤中NH4+ -N (UPMRB9N50矿化11.880 mg/kg)和NO3—N (UPMRB9N50矿化20.060 mg/kg)浓度较高。细菌处理的土壤尿素氮在前两周保持较高水平(第1周和第2周UPMRB9N50处理的尿素氮分别为0.0353%和0.0253%),在观察期结束时逐渐变为零。细菌接种土壤的氮淋失量低于对照,且随着施氮量的增加,氮淋失量增大。100% N处理土壤的累积N淋失量(29.797 mg/kg)高于其他处理。结果表明,在施用少量化肥的情况下,有益菌可以增强氮素矿化,使作物获得养分,同时减少肥料的淋失,从而节约投入成本,保护环境。
Nitrogen Dynamics in Soil Treated with Plant-Growth Promoting Bacteria and Urea Fertilizer
The mineralization of urea fertilizer significantly impacts nitrogen movement in the soil. An incubation study was done on a lab scale basis to examine nitrogen dynamics in soil inoculated with plant growth-promoting bacteria (PGPB) supplemented with varying levels of nitrogen fertilizer in the form of urea (0% N, 25% N, 50% N, 75% N, and 100% N). In the present experiment, sandy clay loam soil was used and incubated for four weeks, and the concentrations of NH4+‒N and NO3–‒N were monitored using the destructive method (Kjeldahl) to determine the mineralization rate of urea. Results showed higher NH4+‒N (11.880 mg/kg mineralized with UPMRB9N50 treatment) and NO3–‒N (20.060 mg/kg mineralized with UPMRB9N50 treatment) concentrations in the bacteria-treated soil compared to the uninoculated control. Urea-N remains higher (0.0353% and 0.0253% from UPMRB9N50 treatment in the first and second weeks, respectively) in bacteria-treated soil during the first two weeks, then gradually becomes zero towards the end of the observing period. Nitrogen (N) leaching loss was lower in bacterial inoculated soil compared to the control, and the leaching loss of N was greater with the increased N fertilizer rates. Cumulative N leaching loss is higher (29.797 mg/kg) in 100% N-treated soil than in other treatments. The findings observed that the beneficial bacteria could enhance the N mineralization to make the nutrient available for the crop while, at the same time, reducing leaching losses of fertilizer when supplied with a minimum amount of chemical fertilizer, thereby saving the input cost and protecting the environment.
期刊介绍:
Pertanika Journal of Science and Technology aims to provide a forum for high quality research related to science and engineering research. Areas relevant to the scope of the journal include: bioinformatics, bioscience, biotechnology and bio-molecular sciences, chemistry, computer science, ecology, engineering, engineering design, environmental control and management, mathematics and statistics, medicine and health sciences, nanotechnology, physics, safety and emergency management, and related fields of study.