Mok Shue Yee, Magaret Sivapragasam, Maisara Shahrom Raja Shahrom
{"title":"壳聚糖在[BMIM]Cl离子液体中的溶解:优化及细菌生态毒性研究","authors":"Mok Shue Yee, Magaret Sivapragasam, Maisara Shahrom Raja Shahrom","doi":"10.47836/pjst.31.6.21","DOIUrl":null,"url":null,"abstract":"Chitosan is formed from chitin deacetylation, but its insolubility remains challenging for industrial applications. An alternative would be employing Ionic Liquids (ILs) as a potential green solvent to dissolve chitosan. Hence, this research aims to study the optimum conditions of chitosan-[BMIM]Cl dissolution using Response Surface Methodology (RSM) and evaluate the ecotoxicity of chitosan-[BMIM]Cl mixture against Gram-positive and Gram-negative bacteria. Chitosan was obtained from heterogenous N-deacetylation of chitin using 50% sodium hydroxide solution at 100°C for 2.5 h. Chitosan dissolution in [BMIM]Cl was optimised using Central Composite Design (CCD) via RSM based on three independent factors: temperature, initial chitosan loading and dissolution time. Ecotoxicity of chitosan-[BMIM]Cl was evaluated using broth microdilution test against Escherichia coli and Staphylococcus aureus. Chitosan with a degree of deacetylation (DD) of 83.42% was obtained after three successive alkali treatments. Fourier Transform Infrared Spectroscopy (FTIR) revealed the presence of free hydroxyl groups, additional amino groups, and reduced C=O and C-H stretch intensity, indicating successful chitin deacetylation. The regression model for chitosan dissolution in [BMIM]Cl was significant (p < 0.05) with a non-significant lack of fit (p > 0.05). The optimised conditions to dissolve chitosan in [BMIM]Cl was 130°C, 1 wt. % and 72 h with a mean relative error of 1.78% and RMSE of 5.0496 wt. %. The toxicity of 10 wt. % chitosan-[BMIM]Cl mixture was “relatively harmless” (EC50 > 1000 mg/L) with an EC50 value of 3.1 wt. % for Escherichia coli and 3.2 wt. % for Staphylococcus aureus.","PeriodicalId":46234,"journal":{"name":"Pertanika Journal of Science and Technology","volume":"43 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chitosan Dissolution in [BMIM]Cl Ionic Liquid: An Optimisation and Bacterial Ecotoxicity Study\",\"authors\":\"Mok Shue Yee, Magaret Sivapragasam, Maisara Shahrom Raja Shahrom\",\"doi\":\"10.47836/pjst.31.6.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chitosan is formed from chitin deacetylation, but its insolubility remains challenging for industrial applications. An alternative would be employing Ionic Liquids (ILs) as a potential green solvent to dissolve chitosan. Hence, this research aims to study the optimum conditions of chitosan-[BMIM]Cl dissolution using Response Surface Methodology (RSM) and evaluate the ecotoxicity of chitosan-[BMIM]Cl mixture against Gram-positive and Gram-negative bacteria. Chitosan was obtained from heterogenous N-deacetylation of chitin using 50% sodium hydroxide solution at 100°C for 2.5 h. Chitosan dissolution in [BMIM]Cl was optimised using Central Composite Design (CCD) via RSM based on three independent factors: temperature, initial chitosan loading and dissolution time. Ecotoxicity of chitosan-[BMIM]Cl was evaluated using broth microdilution test against Escherichia coli and Staphylococcus aureus. Chitosan with a degree of deacetylation (DD) of 83.42% was obtained after three successive alkali treatments. Fourier Transform Infrared Spectroscopy (FTIR) revealed the presence of free hydroxyl groups, additional amino groups, and reduced C=O and C-H stretch intensity, indicating successful chitin deacetylation. The regression model for chitosan dissolution in [BMIM]Cl was significant (p < 0.05) with a non-significant lack of fit (p > 0.05). The optimised conditions to dissolve chitosan in [BMIM]Cl was 130°C, 1 wt. % and 72 h with a mean relative error of 1.78% and RMSE of 5.0496 wt. %. The toxicity of 10 wt. % chitosan-[BMIM]Cl mixture was “relatively harmless” (EC50 > 1000 mg/L) with an EC50 value of 3.1 wt. % for Escherichia coli and 3.2 wt. % for Staphylococcus aureus.\",\"PeriodicalId\":46234,\"journal\":{\"name\":\"Pertanika Journal of Science and Technology\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pertanika Journal of Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47836/pjst.31.6.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pertanika Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47836/pjst.31.6.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Chitosan Dissolution in [BMIM]Cl Ionic Liquid: An Optimisation and Bacterial Ecotoxicity Study
Chitosan is formed from chitin deacetylation, but its insolubility remains challenging for industrial applications. An alternative would be employing Ionic Liquids (ILs) as a potential green solvent to dissolve chitosan. Hence, this research aims to study the optimum conditions of chitosan-[BMIM]Cl dissolution using Response Surface Methodology (RSM) and evaluate the ecotoxicity of chitosan-[BMIM]Cl mixture against Gram-positive and Gram-negative bacteria. Chitosan was obtained from heterogenous N-deacetylation of chitin using 50% sodium hydroxide solution at 100°C for 2.5 h. Chitosan dissolution in [BMIM]Cl was optimised using Central Composite Design (CCD) via RSM based on three independent factors: temperature, initial chitosan loading and dissolution time. Ecotoxicity of chitosan-[BMIM]Cl was evaluated using broth microdilution test against Escherichia coli and Staphylococcus aureus. Chitosan with a degree of deacetylation (DD) of 83.42% was obtained after three successive alkali treatments. Fourier Transform Infrared Spectroscopy (FTIR) revealed the presence of free hydroxyl groups, additional amino groups, and reduced C=O and C-H stretch intensity, indicating successful chitin deacetylation. The regression model for chitosan dissolution in [BMIM]Cl was significant (p < 0.05) with a non-significant lack of fit (p > 0.05). The optimised conditions to dissolve chitosan in [BMIM]Cl was 130°C, 1 wt. % and 72 h with a mean relative error of 1.78% and RMSE of 5.0496 wt. %. The toxicity of 10 wt. % chitosan-[BMIM]Cl mixture was “relatively harmless” (EC50 > 1000 mg/L) with an EC50 value of 3.1 wt. % for Escherichia coli and 3.2 wt. % for Staphylococcus aureus.
期刊介绍:
Pertanika Journal of Science and Technology aims to provide a forum for high quality research related to science and engineering research. Areas relevant to the scope of the journal include: bioinformatics, bioscience, biotechnology and bio-molecular sciences, chemistry, computer science, ecology, engineering, engineering design, environmental control and management, mathematics and statistics, medicine and health sciences, nanotechnology, physics, safety and emergency management, and related fields of study.