{"title":"基于有限体积法的球床几何自然对流CFD建模","authors":"Salih Said Çatalbas, Ali Tiftikci","doi":"10.1515/kern-2023-0039","DOIUrl":null,"url":null,"abstract":"Abstract In this study, we used the finite volume method to computationally model natural convective flow in packed bed geometry. Using the OpenFOAM® v2112 code, we performed the computational analysis. We successfully meshed the intricate packed bed flow geometry, which consists of several spheres positioned at random. The spheres have sizes of 0.006 and 0.01 m, and the associated Rayleigh numbers are 1.83 × 107 and 8.48 × 107 respectively. We used the packed bed heights of H/d = 5, 10, and 20 in the simulations. By comparing the results of the OpenFOAM® v2112 simulations of the natural convection flow for all self-heating sphere in a packed bed, we demonstrated that the velocity distributions and Nusselt values are in good agreement with the experimental data. Additionally, it was evident from the velocity and temperature distributions in a packed bed core that there was a major temperature rise at nearby low velocity fields and a minor velocity rise in the intermediate and upper elevations. We showed that increasing the height of the pebble-bed core and correspondingly increasing the quantity of spheres inside it makes the flow more difficult and also generates local hot spots. This study is notable for using the finite volume method to evaluate natural convection flow in all self-heating packed beds and for simulating packed bed flow using a significant number of spheres. These two factors contribute to the originality of this work.","PeriodicalId":17787,"journal":{"name":"Kerntechnik","volume":"96 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CFD modeling of natural convection in pebble bed geometry with finite volume method\",\"authors\":\"Salih Said Çatalbas, Ali Tiftikci\",\"doi\":\"10.1515/kern-2023-0039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this study, we used the finite volume method to computationally model natural convective flow in packed bed geometry. Using the OpenFOAM® v2112 code, we performed the computational analysis. We successfully meshed the intricate packed bed flow geometry, which consists of several spheres positioned at random. The spheres have sizes of 0.006 and 0.01 m, and the associated Rayleigh numbers are 1.83 × 107 and 8.48 × 107 respectively. We used the packed bed heights of H/d = 5, 10, and 20 in the simulations. By comparing the results of the OpenFOAM® v2112 simulations of the natural convection flow for all self-heating sphere in a packed bed, we demonstrated that the velocity distributions and Nusselt values are in good agreement with the experimental data. Additionally, it was evident from the velocity and temperature distributions in a packed bed core that there was a major temperature rise at nearby low velocity fields and a minor velocity rise in the intermediate and upper elevations. We showed that increasing the height of the pebble-bed core and correspondingly increasing the quantity of spheres inside it makes the flow more difficult and also generates local hot spots. This study is notable for using the finite volume method to evaluate natural convection flow in all self-heating packed beds and for simulating packed bed flow using a significant number of spheres. These two factors contribute to the originality of this work.\",\"PeriodicalId\":17787,\"journal\":{\"name\":\"Kerntechnik\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kerntechnik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/kern-2023-0039\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kerntechnik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/kern-2023-0039","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
摘要本文采用有限体积法对充填床的自然对流流动进行了几何模型计算。我们使用OpenFOAM®v2112代码进行了计算分析。我们成功地网格化了复杂的堆积床流几何形状,它由几个随机定位的球体组成。球体尺寸分别为0.006和0.01 m,瑞利数分别为1.83 × 10.7和8.48 × 10.7。模拟中采用了H / d = 5、10和20的充填层高度。通过对比OpenFOAM®v2112对全自热球在填充床内自然对流流动的模拟结果,证明了速度分布和Nusselt值与实验数据吻合较好。此外,从充填层岩心的速度和温度分布可以看出,在靠近低速度场的地方温度上升幅度较大,而在中高海拔处速度上升幅度较小。结果表明,增加球床岩心的高度,相应增加球床岩心内球体的数量,会使流动更加困难,也会产生局部热点。这项研究值得注意的是使用有限体积方法来评估所有自加热填充床中的自然对流流动,并使用大量球体模拟填充床流动。这两个因素促成了这部作品的独创性。
CFD modeling of natural convection in pebble bed geometry with finite volume method
Abstract In this study, we used the finite volume method to computationally model natural convective flow in packed bed geometry. Using the OpenFOAM® v2112 code, we performed the computational analysis. We successfully meshed the intricate packed bed flow geometry, which consists of several spheres positioned at random. The spheres have sizes of 0.006 and 0.01 m, and the associated Rayleigh numbers are 1.83 × 107 and 8.48 × 107 respectively. We used the packed bed heights of H/d = 5, 10, and 20 in the simulations. By comparing the results of the OpenFOAM® v2112 simulations of the natural convection flow for all self-heating sphere in a packed bed, we demonstrated that the velocity distributions and Nusselt values are in good agreement with the experimental data. Additionally, it was evident from the velocity and temperature distributions in a packed bed core that there was a major temperature rise at nearby low velocity fields and a minor velocity rise in the intermediate and upper elevations. We showed that increasing the height of the pebble-bed core and correspondingly increasing the quantity of spheres inside it makes the flow more difficult and also generates local hot spots. This study is notable for using the finite volume method to evaluate natural convection flow in all self-heating packed beds and for simulating packed bed flow using a significant number of spheres. These two factors contribute to the originality of this work.
期刊介绍:
Kerntechnik is an independent journal for nuclear engineering (including design, operation, safety and economics of nuclear power stations, research reactors and simulators), energy systems, radiation (ionizing radiation in industry, medicine and research) and radiological protection (biological effects of ionizing radiation, the system of protection for occupational, medical and public exposures, the assessment of doses, operational protection and safety programs, management of radioactive wastes, decommissioning and regulatory requirements).