{"title":"基于Arcan试验的蠕变机械框架设置方法的开发","authors":"Marthe Loiseau, Sylvain Chataigner, Romain Créac’hcadec, Emilie Lepretre, Jean-Philippe Court, Marie-Odette Quéméré","doi":"10.1520/jte20230225","DOIUrl":null,"url":null,"abstract":"Structural adhesive bonding has several advantages compared to other assembly techniques such as welding and riveting. Yet, creep is an important long-term phenomenon that needs to be considered for the design of such joints. To investigate this aspect, experimental investigations are needed at the scale of the adhesive layer. At such a scale, Arcan setting presents several advantages compared to other existing tests (analysis of different loads, limited edge effects) and was thus chosen for the development of an experimental approach aiming at providing creep characterization of adhesive layers. A mechanically operated testing machine was thus developed and is presented herein. To measure local strains of the adhesive layer, two linear variable differential transformer sensors are fixed on a support placed on the beaks of the Arcan sample according to two directions: normal and tangential to the bonded surface. The developed system (mechanical system and strain measurement) proved to be successful in investigating the creep behavior of adhesive layers while varying several parameters (load levels, type of load, temperature, adhesive thickness).","PeriodicalId":17109,"journal":{"name":"Journal of Testing and Evaluation","volume":"93 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a Creep Mechanical Frame Setting Based on Arcan Test\",\"authors\":\"Marthe Loiseau, Sylvain Chataigner, Romain Créac’hcadec, Emilie Lepretre, Jean-Philippe Court, Marie-Odette Quéméré\",\"doi\":\"10.1520/jte20230225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Structural adhesive bonding has several advantages compared to other assembly techniques such as welding and riveting. Yet, creep is an important long-term phenomenon that needs to be considered for the design of such joints. To investigate this aspect, experimental investigations are needed at the scale of the adhesive layer. At such a scale, Arcan setting presents several advantages compared to other existing tests (analysis of different loads, limited edge effects) and was thus chosen for the development of an experimental approach aiming at providing creep characterization of adhesive layers. A mechanically operated testing machine was thus developed and is presented herein. To measure local strains of the adhesive layer, two linear variable differential transformer sensors are fixed on a support placed on the beaks of the Arcan sample according to two directions: normal and tangential to the bonded surface. The developed system (mechanical system and strain measurement) proved to be successful in investigating the creep behavior of adhesive layers while varying several parameters (load levels, type of load, temperature, adhesive thickness).\",\"PeriodicalId\":17109,\"journal\":{\"name\":\"Journal of Testing and Evaluation\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Testing and Evaluation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1520/jte20230225\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Testing and Evaluation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1520/jte20230225","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Development of a Creep Mechanical Frame Setting Based on Arcan Test
Structural adhesive bonding has several advantages compared to other assembly techniques such as welding and riveting. Yet, creep is an important long-term phenomenon that needs to be considered for the design of such joints. To investigate this aspect, experimental investigations are needed at the scale of the adhesive layer. At such a scale, Arcan setting presents several advantages compared to other existing tests (analysis of different loads, limited edge effects) and was thus chosen for the development of an experimental approach aiming at providing creep characterization of adhesive layers. A mechanically operated testing machine was thus developed and is presented herein. To measure local strains of the adhesive layer, two linear variable differential transformer sensors are fixed on a support placed on the beaks of the Arcan sample according to two directions: normal and tangential to the bonded surface. The developed system (mechanical system and strain measurement) proved to be successful in investigating the creep behavior of adhesive layers while varying several parameters (load levels, type of load, temperature, adhesive thickness).
期刊介绍:
This journal is published in six issues per year. Some issues, in whole or in part, may be Special Issues focused on a topic of interest to our readers.
This flagship ASTM journal is a multi-disciplinary forum for the applied sciences and engineering. Published bimonthly, the Journal of Testing and Evaluation presents new technical information, derived from field and laboratory testing, on the performance, quantitative characterization, and evaluation of materials. Papers present new methods and data along with critical evaluations; report users'' experience with test methods and results of interlaboratory testing and analysis; and stimulate new ideas in the fields of testing and evaluation.
Major topic areas are fatigue and fracture, mechanical testing, and fire testing. Also publishes review articles, technical notes, research briefs and commentary.