{"title":"传热对三热源布朗制冷机性能的影响","authors":"Congzheng Qi, Lingen Chen, Yanlin Ge, Huijun Feng","doi":"10.1515/jnet-2023-0050","DOIUrl":null,"url":null,"abstract":"Abstract A finite-time thermodynamic (FTT) model of three-heat-reservoir thermal Brownian refrigerator is established in this paper. This model can be equivalent to the coupling of a thermal Brownian engine and a thermal Brownian refrigerator with heat transfer effects. Expressions for cooling load and coefficient of performance (COP) are derived by combining FTT and non-equilibrium thermodynamics (NET). The system performance is studied and compared with those of previous models. For fixed internal parameters, the thermal conductance distributions among three heat exchangers are optimized for maximal cooling load. For fixed inventory allocations, the internal parameters are also optimized for maximal cooling load. Finally, the double-maximum cooling load is obtained by optimizing internal parameters and external thermal conductance distributions simultaneously, and the optimal operating temperatures are also derived. Results show that half of total thermal conductance should be placed in condenser to reject heat to ambient under maximal cooling load regime. The heat transfer determines system performance by controlling the working temperatures and the coupling of two external loads. The system works in reversible state when COP reaches its maximum value. The new performance limits can predict that of three-heat-reservoir thermal Brownian refrigerator more accurately, and also include those of NET model.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":"118 1","pages":"0"},"PeriodicalIF":4.3000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Heat transfer effect on the performance of three-heat-reservoir thermal Brownian refrigerator\",\"authors\":\"Congzheng Qi, Lingen Chen, Yanlin Ge, Huijun Feng\",\"doi\":\"10.1515/jnet-2023-0050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A finite-time thermodynamic (FTT) model of three-heat-reservoir thermal Brownian refrigerator is established in this paper. This model can be equivalent to the coupling of a thermal Brownian engine and a thermal Brownian refrigerator with heat transfer effects. Expressions for cooling load and coefficient of performance (COP) are derived by combining FTT and non-equilibrium thermodynamics (NET). The system performance is studied and compared with those of previous models. For fixed internal parameters, the thermal conductance distributions among three heat exchangers are optimized for maximal cooling load. For fixed inventory allocations, the internal parameters are also optimized for maximal cooling load. Finally, the double-maximum cooling load is obtained by optimizing internal parameters and external thermal conductance distributions simultaneously, and the optimal operating temperatures are also derived. Results show that half of total thermal conductance should be placed in condenser to reject heat to ambient under maximal cooling load regime. The heat transfer determines system performance by controlling the working temperatures and the coupling of two external loads. The system works in reversible state when COP reaches its maximum value. The new performance limits can predict that of three-heat-reservoir thermal Brownian refrigerator more accurately, and also include those of NET model.\",\"PeriodicalId\":16428,\"journal\":{\"name\":\"Journal of Non-Equilibrium Thermodynamics\",\"volume\":\"118 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Non-Equilibrium Thermodynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jnet-2023-0050\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Equilibrium Thermodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jnet-2023-0050","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Heat transfer effect on the performance of three-heat-reservoir thermal Brownian refrigerator
Abstract A finite-time thermodynamic (FTT) model of three-heat-reservoir thermal Brownian refrigerator is established in this paper. This model can be equivalent to the coupling of a thermal Brownian engine and a thermal Brownian refrigerator with heat transfer effects. Expressions for cooling load and coefficient of performance (COP) are derived by combining FTT and non-equilibrium thermodynamics (NET). The system performance is studied and compared with those of previous models. For fixed internal parameters, the thermal conductance distributions among three heat exchangers are optimized for maximal cooling load. For fixed inventory allocations, the internal parameters are also optimized for maximal cooling load. Finally, the double-maximum cooling load is obtained by optimizing internal parameters and external thermal conductance distributions simultaneously, and the optimal operating temperatures are also derived. Results show that half of total thermal conductance should be placed in condenser to reject heat to ambient under maximal cooling load regime. The heat transfer determines system performance by controlling the working temperatures and the coupling of two external loads. The system works in reversible state when COP reaches its maximum value. The new performance limits can predict that of three-heat-reservoir thermal Brownian refrigerator more accurately, and also include those of NET model.
期刊介绍:
The Journal of Non-Equilibrium Thermodynamics serves as an international publication organ for new ideas, insights and results on non-equilibrium phenomena in science, engineering and related natural systems. The central aim of the journal is to provide a bridge between science and engineering and to promote scientific exchange on a) newly observed non-equilibrium phenomena, b) analytic or numeric modeling for their interpretation, c) vanguard methods to describe non-equilibrium phenomena.
Contributions should – among others – present novel approaches to analyzing, modeling and optimizing processes of engineering relevance such as transport processes of mass, momentum and energy, separation of fluid phases, reproduction of living cells, or energy conversion. The journal is particularly interested in contributions which add to the basic understanding of non-equilibrium phenomena in science and engineering, with systems of interest ranging from the macro- to the nano-level.
The Journal of Non-Equilibrium Thermodynamics has recently expanded its scope to place new emphasis on theoretical and experimental investigations of non-equilibrium phenomena in thermophysical, chemical, biochemical and abstract model systems of engineering relevance. We are therefore pleased to invite submissions which present newly observed non-equilibrium phenomena, analytic or fuzzy models for their interpretation, or new methods for their description.