Donovan Birky, Karl Garbrecht, John Emery, Coleman Alleman, Geoffrey Bomarito, Jacob Hochhalter
{"title":"用符号回归和迁移学习推广Gurson模型以放松固有假设","authors":"Donovan Birky, Karl Garbrecht, John Emery, Coleman Alleman, Geoffrey Bomarito, Jacob Hochhalter","doi":"10.1088/1361-651x/acfe28","DOIUrl":null,"url":null,"abstract":"Abstract To generate material models with fewer limiting assumptions while maintaining closed-form, interpretable solutions, we propose using genetic programming based symbolic regression (GPSR), a machine learning (ML) approach that describes data using free-form symbolic expressions. To maximize interpretability, we start from an analytical, derived material model, the Gurson model for porous ductile metals, and systematically relax inherent assumptions made in its derivation to understand each assumption’s contribution to the GPSR model forms. We incorporate transfer learning methods into the GPSR training process to increase GPSR efficiency and generate models that abide by known mechanics of the system. The results show that regularizing the GPSR fitness function is critical for generating physically valid models and illustrate how GPSR allows a high level of interpretability compared with other ML approaches. The method of systematic assumption relaxation allows the generation of models that address limiting assumptions found in the Gurson model, and the symbolic forms allow conjecture of decreased material strength due to void interaction and non-symmetric void shapes.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":"118 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalizing the Gurson Model Using Symbolic Regression and Transfer Learning to Relax Inherent Assumptions\",\"authors\":\"Donovan Birky, Karl Garbrecht, John Emery, Coleman Alleman, Geoffrey Bomarito, Jacob Hochhalter\",\"doi\":\"10.1088/1361-651x/acfe28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract To generate material models with fewer limiting assumptions while maintaining closed-form, interpretable solutions, we propose using genetic programming based symbolic regression (GPSR), a machine learning (ML) approach that describes data using free-form symbolic expressions. To maximize interpretability, we start from an analytical, derived material model, the Gurson model for porous ductile metals, and systematically relax inherent assumptions made in its derivation to understand each assumption’s contribution to the GPSR model forms. We incorporate transfer learning methods into the GPSR training process to increase GPSR efficiency and generate models that abide by known mechanics of the system. The results show that regularizing the GPSR fitness function is critical for generating physically valid models and illustrate how GPSR allows a high level of interpretability compared with other ML approaches. The method of systematic assumption relaxation allows the generation of models that address limiting assumptions found in the Gurson model, and the symbolic forms allow conjecture of decreased material strength due to void interaction and non-symmetric void shapes.\",\"PeriodicalId\":18648,\"journal\":{\"name\":\"Modelling and Simulation in Materials Science and Engineering\",\"volume\":\"118 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modelling and Simulation in Materials Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-651x/acfe28\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Materials Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-651x/acfe28","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Generalizing the Gurson Model Using Symbolic Regression and Transfer Learning to Relax Inherent Assumptions
Abstract To generate material models with fewer limiting assumptions while maintaining closed-form, interpretable solutions, we propose using genetic programming based symbolic regression (GPSR), a machine learning (ML) approach that describes data using free-form symbolic expressions. To maximize interpretability, we start from an analytical, derived material model, the Gurson model for porous ductile metals, and systematically relax inherent assumptions made in its derivation to understand each assumption’s contribution to the GPSR model forms. We incorporate transfer learning methods into the GPSR training process to increase GPSR efficiency and generate models that abide by known mechanics of the system. The results show that regularizing the GPSR fitness function is critical for generating physically valid models and illustrate how GPSR allows a high level of interpretability compared with other ML approaches. The method of systematic assumption relaxation allows the generation of models that address limiting assumptions found in the Gurson model, and the symbolic forms allow conjecture of decreased material strength due to void interaction and non-symmetric void shapes.
期刊介绍:
Serving the multidisciplinary materials community, the journal aims to publish new research work that advances the understanding and prediction of material behaviour at scales from atomistic to macroscopic through modelling and simulation.
Subject coverage:
Modelling and/or simulation across materials science that emphasizes fundamental materials issues advancing the understanding and prediction of material behaviour. Interdisciplinary research that tackles challenging and complex materials problems where the governing phenomena may span different scales of materials behaviour, with an emphasis on the development of quantitative approaches to explain and predict experimental observations. Material processing that advances the fundamental materials science and engineering underpinning the connection between processing and properties. Covering all classes of materials, and mechanical, microstructural, electronic, chemical, biological, and optical properties.