{"title":"基于负循环的离心压缩机非定常流控新技术","authors":"Shuli Hong, Yuxuan Yang, Weiyu Lu, Xin Xiang","doi":"10.1155/2023/6906266","DOIUrl":null,"url":null,"abstract":"The tip leakage vortex (TLV) induced by the tip clearance flow has a significant impact on the performance of centrifugal compressors, causing impeller flow losses and reducing the stall margin. To solve this problem, an unsteady flow control technology called the NCFC method is proposed based on the concept of negative circulation control, realized by a vortex generator placed in a tube connected with the shroud through a hole. The approach is derived from a theoretical study of the compressor TLV by introducing a two-dimensional vortex model. A numerical simulation is then performed to verify the effectiveness of the NCFC method. The result shows that the NCFC method can greatly stabilize the flow field at the blade tip and improve the stall margin and efficiency of the compressor without reducing the total pressure ratio of the compressor, which has the characteristics of both unsteadiness and negative circulation effect. In addition, a HC method with only unsteady excitation effect is also studied for comparison, which only slightly stabilizes the blade tip flow and increases the stall margin of the compressor, suggesting that the NCFC is more effective than the HC. Finally, it is highly recommended to improve the efficiency of any unsteady jet/suction and separation flow interaction.","PeriodicalId":13748,"journal":{"name":"International Journal of Aerospace Engineering","volume":"118 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Unsteady Flow Control Technology of Centrifugal Compressor Based on Negative Circulation Concept\",\"authors\":\"Shuli Hong, Yuxuan Yang, Weiyu Lu, Xin Xiang\",\"doi\":\"10.1155/2023/6906266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The tip leakage vortex (TLV) induced by the tip clearance flow has a significant impact on the performance of centrifugal compressors, causing impeller flow losses and reducing the stall margin. To solve this problem, an unsteady flow control technology called the NCFC method is proposed based on the concept of negative circulation control, realized by a vortex generator placed in a tube connected with the shroud through a hole. The approach is derived from a theoretical study of the compressor TLV by introducing a two-dimensional vortex model. A numerical simulation is then performed to verify the effectiveness of the NCFC method. The result shows that the NCFC method can greatly stabilize the flow field at the blade tip and improve the stall margin and efficiency of the compressor without reducing the total pressure ratio of the compressor, which has the characteristics of both unsteadiness and negative circulation effect. In addition, a HC method with only unsteady excitation effect is also studied for comparison, which only slightly stabilizes the blade tip flow and increases the stall margin of the compressor, suggesting that the NCFC is more effective than the HC. Finally, it is highly recommended to improve the efficiency of any unsteady jet/suction and separation flow interaction.\",\"PeriodicalId\":13748,\"journal\":{\"name\":\"International Journal of Aerospace Engineering\",\"volume\":\"118 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Aerospace Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/6906266\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aerospace Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/6906266","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
A New Unsteady Flow Control Technology of Centrifugal Compressor Based on Negative Circulation Concept
The tip leakage vortex (TLV) induced by the tip clearance flow has a significant impact on the performance of centrifugal compressors, causing impeller flow losses and reducing the stall margin. To solve this problem, an unsteady flow control technology called the NCFC method is proposed based on the concept of negative circulation control, realized by a vortex generator placed in a tube connected with the shroud through a hole. The approach is derived from a theoretical study of the compressor TLV by introducing a two-dimensional vortex model. A numerical simulation is then performed to verify the effectiveness of the NCFC method. The result shows that the NCFC method can greatly stabilize the flow field at the blade tip and improve the stall margin and efficiency of the compressor without reducing the total pressure ratio of the compressor, which has the characteristics of both unsteadiness and negative circulation effect. In addition, a HC method with only unsteady excitation effect is also studied for comparison, which only slightly stabilizes the blade tip flow and increases the stall margin of the compressor, suggesting that the NCFC is more effective than the HC. Finally, it is highly recommended to improve the efficiency of any unsteady jet/suction and separation flow interaction.
期刊介绍:
International Journal of Aerospace Engineering aims to serve the international aerospace engineering community through dissemination of scientific knowledge on practical engineering and design methodologies pertaining to aircraft and space vehicles.
Original unpublished manuscripts are solicited on all areas of aerospace engineering including but not limited to:
-Mechanics of materials and structures-
Aerodynamics and fluid mechanics-
Dynamics and control-
Aeroacoustics-
Aeroelasticity-
Propulsion and combustion-
Avionics and systems-
Flight simulation and mechanics-
Unmanned air vehicles (UAVs).
Review articles on any of the above topics are also welcome.