Florian Jüngermann, Jan Křetínský, Maximilian Weininger
{"title":"代数上可解释的控制器:决策树和支持向量机联合起来","authors":"Florian Jüngermann, Jan Křetínský, Maximilian Weininger","doi":"10.1007/s10009-023-00716-z","DOIUrl":null,"url":null,"abstract":"Abstract Recently, decision trees (DT) have been used as an explainable representation of controllers (a.k.a. strategies, policies, schedulers). Although they are often very efficient and produce small and understandable controllers for discrete systems, complex continuous dynamics still pose a challenge. In particular, when the relationships between variables take more complex forms, such as polynomials, they cannot be obtained using the available DT learning procedures. In contrast, support vector machines provide a more powerful representation, capable of discovering many such relationships, but not in an explainable form. Therefore, we suggest to combine the two frameworks to obtain an understandable representation over richer, domain-relevant algebraic predicates. We demonstrate and evaluate the proposed method experimentally on established benchmarks.","PeriodicalId":14395,"journal":{"name":"International Journal on Software Tools for Technology Transfer","volume":"167 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Algebraically explainable controllers: decision trees and support vector machines join forces\",\"authors\":\"Florian Jüngermann, Jan Křetínský, Maximilian Weininger\",\"doi\":\"10.1007/s10009-023-00716-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Recently, decision trees (DT) have been used as an explainable representation of controllers (a.k.a. strategies, policies, schedulers). Although they are often very efficient and produce small and understandable controllers for discrete systems, complex continuous dynamics still pose a challenge. In particular, when the relationships between variables take more complex forms, such as polynomials, they cannot be obtained using the available DT learning procedures. In contrast, support vector machines provide a more powerful representation, capable of discovering many such relationships, but not in an explainable form. Therefore, we suggest to combine the two frameworks to obtain an understandable representation over richer, domain-relevant algebraic predicates. We demonstrate and evaluate the proposed method experimentally on established benchmarks.\",\"PeriodicalId\":14395,\"journal\":{\"name\":\"International Journal on Software Tools for Technology Transfer\",\"volume\":\"167 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Software Tools for Technology Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10009-023-00716-z\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Software Tools for Technology Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10009-023-00716-z","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Algebraically explainable controllers: decision trees and support vector machines join forces
Abstract Recently, decision trees (DT) have been used as an explainable representation of controllers (a.k.a. strategies, policies, schedulers). Although they are often very efficient and produce small and understandable controllers for discrete systems, complex continuous dynamics still pose a challenge. In particular, when the relationships between variables take more complex forms, such as polynomials, they cannot be obtained using the available DT learning procedures. In contrast, support vector machines provide a more powerful representation, capable of discovering many such relationships, but not in an explainable form. Therefore, we suggest to combine the two frameworks to obtain an understandable representation over richer, domain-relevant algebraic predicates. We demonstrate and evaluate the proposed method experimentally on established benchmarks.
期刊介绍:
The International Journal on Software Tools for Technology Transfer (STTT) provides a forum for the discussion of all aspects of tools supporting the development of computer systems. It offers, above all, a tool-oriented link between academic research and industrial practice.
Tool support for the development of reliable and correct computer-based systems is of growing importance, and a wealth of design methodologies, algorithms, and associated tools have been developed in different areas of computer science. However, each area has its own culture and terminology, preventing researchers from taking advantage of the results obtained by colleagues in other fields. Tool builders are often unaware of the work done by others, and thus unable to apply it. The situation is even more critical when considering the transfer of new technology into industrial practice.