基于RFB模块和注意机制的目标检测算法

志青 王
{"title":"基于RFB模块和注意机制的目标检测算法","authors":"志青 王","doi":"10.12677/sea.2023.125067","DOIUrl":null,"url":null,"abstract":"Aiming at the problem of insufficient correlation of feature map extracted by deep convolutional network in object detection algorithm, an improved SSD object detection algorithm based on Re-ceptive Field Block and Coordinate Attention is proposed. The deep feature extraction network ResNet50 is used as the backbone network, and a coordinate attention module is added to the convolutional layer structure to capture the information of direction and location awareness. In","PeriodicalId":69507,"journal":{"name":"软件工程与应用","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Object Detection Algorithm Based on RFB Module and Attention Mechanism\",\"authors\":\"志青 王\",\"doi\":\"10.12677/sea.2023.125067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the problem of insufficient correlation of feature map extracted by deep convolutional network in object detection algorithm, an improved SSD object detection algorithm based on Re-ceptive Field Block and Coordinate Attention is proposed. The deep feature extraction network ResNet50 is used as the backbone network, and a coordinate attention module is added to the convolutional layer structure to capture the information of direction and location awareness. In\",\"PeriodicalId\":69507,\"journal\":{\"name\":\"软件工程与应用\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"软件工程与应用\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12677/sea.2023.125067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"软件工程与应用","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12677/sea.2023.125067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Object Detection Algorithm Based on RFB Module and Attention Mechanism
Aiming at the problem of insufficient correlation of feature map extracted by deep convolutional network in object detection algorithm, an improved SSD object detection algorithm based on Re-ceptive Field Block and Coordinate Attention is proposed. The deep feature extraction network ResNet50 is used as the backbone network, and a coordinate attention module is added to the convolutional layer structure to capture the information of direction and location awareness. In
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
274
期刊最新文献
Design of Seawater Intrusion Detection and Early Warning Control System Based on NB-IoT Construction of Smart Community Plat Form Based on Digital Twin Object Detection Algorithm Based on RFB Module and Attention Mechanism Real-Time Vehicle Detection Based on Improved YOLOv5 for Drone Images Research into Encryption Based on Finger Vein Feature Image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1