具有时滞和挫折的广义Kuramoto模型的同步

IF 1.2 4区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Networks and Heterogeneous Media Pub Date : 2023-01-01 DOI:10.3934/nhm.2023077
Tingting Zhu
{"title":"具有时滞和挫折的广义Kuramoto模型的同步","authors":"Tingting Zhu","doi":"10.3934/nhm.2023077","DOIUrl":null,"url":null,"abstract":"<abstract><p>We studied the collective behaviors of the time-delayed Kuramoto model with frustration under general network topology. For the generalized Kuramoto model with the graph diameter no greater than two and under a sufficient regime in terms of small time delay and frustration and large coupling strength, we showed that the complete frequency synchronization occurs exponentially fast when the initial configuration is distributed in a half circle. We also studied a complete network, which is a small perturbation of all-to-all coupling, as well as presented sufficient frameworks leading to the exponential emergence of frequency synchronization for the initial data confined in a half circle.</p></abstract>","PeriodicalId":54732,"journal":{"name":"Networks and Heterogeneous Media","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Synchronization of the generalized Kuramoto model with time delay and frustration\",\"authors\":\"Tingting Zhu\",\"doi\":\"10.3934/nhm.2023077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<abstract><p>We studied the collective behaviors of the time-delayed Kuramoto model with frustration under general network topology. For the generalized Kuramoto model with the graph diameter no greater than two and under a sufficient regime in terms of small time delay and frustration and large coupling strength, we showed that the complete frequency synchronization occurs exponentially fast when the initial configuration is distributed in a half circle. We also studied a complete network, which is a small perturbation of all-to-all coupling, as well as presented sufficient frameworks leading to the exponential emergence of frequency synchronization for the initial data confined in a half circle.</p></abstract>\",\"PeriodicalId\":54732,\"journal\":{\"name\":\"Networks and Heterogeneous Media\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Networks and Heterogeneous Media\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/nhm.2023077\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Networks and Heterogeneous Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/nhm.2023077","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

摘要

< < >我们研究了在一般网络拓扑下具有挫折的延时Kuramoto模型的集体行为。对于图径不大于2的广义Kuramoto模型,在足够的时滞和挫折小、耦合强度大的条件下,我们证明了当初始构型分布在半圆内时,完全频率同步以指数速度发生。我们还研究了一个完整的网络,这是一个小的全对全耦合的扰动,并提出了足够的框架,导致限制在半圆内的初始数据呈指数级出现频率同步。</p></abstract>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synchronization of the generalized Kuramoto model with time delay and frustration

We studied the collective behaviors of the time-delayed Kuramoto model with frustration under general network topology. For the generalized Kuramoto model with the graph diameter no greater than two and under a sufficient regime in terms of small time delay and frustration and large coupling strength, we showed that the complete frequency synchronization occurs exponentially fast when the initial configuration is distributed in a half circle. We also studied a complete network, which is a small perturbation of all-to-all coupling, as well as presented sufficient frameworks leading to the exponential emergence of frequency synchronization for the initial data confined in a half circle.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Networks and Heterogeneous Media
Networks and Heterogeneous Media 数学-数学跨学科应用
CiteScore
1.80
自引率
0.00%
发文量
32
审稿时长
6-12 weeks
期刊介绍: NHM offers a strong combination of three features: Interdisciplinary character, specific focus, and deep mathematical content. Also, the journal aims to create a link between the discrete and the continuous communities, which distinguishes it from other journals with strong PDE orientation. NHM publishes original contributions of high quality in networks, heterogeneous media and related fields. NHM is thus devoted to research work on complex media arising in mathematical, physical, engineering, socio-economical and bio-medical problems.
期刊最新文献
Real positive solutions of operator equations $ AX = C $ and $ XB = D $ Some results on the existence and stability of impulsive delayed stochastic differential equations with Poisson jumps Diffusion of binary opinions in a growing population with heterogeneous behaviour and external influence High-order schemes for the fractional coupled nonlinear Schrödinger equation Error estimate of L1-ADI scheme for two-dimensional multi-term time fractional diffusion equation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1