{"title":"基于TMPTO的纳米润滑油摩擦学性能评价","authors":"Bhanudas Bachchhav, Yash Anecha, Balraj Waghmare","doi":"10.37255/jme.v18i3pp091-095","DOIUrl":null,"url":null,"abstract":"In recent years, nano lubricants have gained significant attention due to their potential to enhance lubricant efficacy and reduce friction and wear. This research work aims to investigate the effects of TiO2 nanoparticles into trimethylolpropane trioleate (TMPTO) based bio-lubricant on its friction and wear characteristics. The four-ball tester is employed to evaluate the lubricating performance of the TMPTO-TiO2 nano-lubricant at varying additive concentrations under controlled conditions of speed, load, and temperature. The parameters were ranked based on the results of the Taguchi experiments and their corresponding single-to-noise ratios. The combination of TMPTO base oil and TiO2 nano-lubricant exhibited a synergistic effect in diminishing friction and wear. This research aligns with the growing demand for environmentally friendly and efficient lubrication solutions in various metalworking industries. Further investigation of the wear mechanism under TMPTO oil-based nano lubricants and its applicability in high-speed metal cutting applications is suggested.","PeriodicalId":38895,"journal":{"name":"Academic Journal of Manufacturing Engineering","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tribological Performance Evaluation of TMPTO Based Nano-Lubricants\",\"authors\":\"Bhanudas Bachchhav, Yash Anecha, Balraj Waghmare\",\"doi\":\"10.37255/jme.v18i3pp091-095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, nano lubricants have gained significant attention due to their potential to enhance lubricant efficacy and reduce friction and wear. This research work aims to investigate the effects of TiO2 nanoparticles into trimethylolpropane trioleate (TMPTO) based bio-lubricant on its friction and wear characteristics. The four-ball tester is employed to evaluate the lubricating performance of the TMPTO-TiO2 nano-lubricant at varying additive concentrations under controlled conditions of speed, load, and temperature. The parameters were ranked based on the results of the Taguchi experiments and their corresponding single-to-noise ratios. The combination of TMPTO base oil and TiO2 nano-lubricant exhibited a synergistic effect in diminishing friction and wear. This research aligns with the growing demand for environmentally friendly and efficient lubrication solutions in various metalworking industries. Further investigation of the wear mechanism under TMPTO oil-based nano lubricants and its applicability in high-speed metal cutting applications is suggested.\",\"PeriodicalId\":38895,\"journal\":{\"name\":\"Academic Journal of Manufacturing Engineering\",\"volume\":\"113 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Academic Journal of Manufacturing Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37255/jme.v18i3pp091-095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Journal of Manufacturing Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37255/jme.v18i3pp091-095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Tribological Performance Evaluation of TMPTO Based Nano-Lubricants
In recent years, nano lubricants have gained significant attention due to their potential to enhance lubricant efficacy and reduce friction and wear. This research work aims to investigate the effects of TiO2 nanoparticles into trimethylolpropane trioleate (TMPTO) based bio-lubricant on its friction and wear characteristics. The four-ball tester is employed to evaluate the lubricating performance of the TMPTO-TiO2 nano-lubricant at varying additive concentrations under controlled conditions of speed, load, and temperature. The parameters were ranked based on the results of the Taguchi experiments and their corresponding single-to-noise ratios. The combination of TMPTO base oil and TiO2 nano-lubricant exhibited a synergistic effect in diminishing friction and wear. This research aligns with the growing demand for environmentally friendly and efficient lubrication solutions in various metalworking industries. Further investigation of the wear mechanism under TMPTO oil-based nano lubricants and its applicability in high-speed metal cutting applications is suggested.