Takahiro Koga, Takashi Abe, Yoshitsugu Otomo, Masaki Yamamoto, Marius Rosu
{"title":"基于模型设计的半波整流无刷同步电机代理建模及应用","authors":"Takahiro Koga, Takashi Abe, Yoshitsugu Otomo, Masaki Yamamoto, Marius Rosu","doi":"10.1541/ieejjia.23005913","DOIUrl":null,"url":null,"abstract":"This paper presents a surrogate modeling technology and the application using the response surface methodology (RSM) for a half-wave rectified brushless synchronous motor (HRSM) for model-based design. HRSM adopts a field winding that is single-phase short-circuited through a diode, instead of a brush at the rotor. This brushless excitation facilitates the maintenance of the motor and variable field flux operation. However, creating a high accuracy motor model for model-based design using HRSM considering field current characteristics with the effects of the diode is difficult, and the problem of an unrealistic complex calculation for applications such as drive cycle simulations exists. To overcome these challenges, we propose a surrogate modeling technique for HRSM using RSM and finite element analysis. The objective of this study is achieve the fast and accurate simulation to predict the wide range and long-time driving conditions of HRSM, which is difficult to validate experimentally.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surrogate Modeling and Application of Half-Wave Rectified Brushless Synchronous Motor for Model-Based Design\",\"authors\":\"Takahiro Koga, Takashi Abe, Yoshitsugu Otomo, Masaki Yamamoto, Marius Rosu\",\"doi\":\"10.1541/ieejjia.23005913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a surrogate modeling technology and the application using the response surface methodology (RSM) for a half-wave rectified brushless synchronous motor (HRSM) for model-based design. HRSM adopts a field winding that is single-phase short-circuited through a diode, instead of a brush at the rotor. This brushless excitation facilitates the maintenance of the motor and variable field flux operation. However, creating a high accuracy motor model for model-based design using HRSM considering field current characteristics with the effects of the diode is difficult, and the problem of an unrealistic complex calculation for applications such as drive cycle simulations exists. To overcome these challenges, we propose a surrogate modeling technique for HRSM using RSM and finite element analysis. The objective of this study is achieve the fast and accurate simulation to predict the wide range and long-time driving conditions of HRSM, which is difficult to validate experimentally.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1541/ieejjia.23005913\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1541/ieejjia.23005913","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Surrogate Modeling and Application of Half-Wave Rectified Brushless Synchronous Motor for Model-Based Design
This paper presents a surrogate modeling technology and the application using the response surface methodology (RSM) for a half-wave rectified brushless synchronous motor (HRSM) for model-based design. HRSM adopts a field winding that is single-phase short-circuited through a diode, instead of a brush at the rotor. This brushless excitation facilitates the maintenance of the motor and variable field flux operation. However, creating a high accuracy motor model for model-based design using HRSM considering field current characteristics with the effects of the diode is difficult, and the problem of an unrealistic complex calculation for applications such as drive cycle simulations exists. To overcome these challenges, we propose a surrogate modeling technique for HRSM using RSM and finite element analysis. The objective of this study is achieve the fast and accurate simulation to predict the wide range and long-time driving conditions of HRSM, which is difficult to validate experimentally.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.