ena6016 - t4白钢车身车顶热屈曲和后屈曲行为的数值研究

IF 1.2 4区 工程技术 Q3 ENGINEERING, MECHANICAL Mechanics & Industry Pub Date : 2023-01-01 DOI:10.1051/meca/2023032
Leandro M. da Silva, Christophe Cellard, Edouard Geslain, Laurent Sohier, Olivier Ponte-Felgueiras, Romain Créac'hcadec
{"title":"ena6016 - t4白钢车身车顶热屈曲和后屈曲行为的数值研究","authors":"Leandro M. da Silva, Christophe Cellard, Edouard Geslain, Laurent Sohier, Olivier Ponte-Felgueiras, Romain Créac'hcadec","doi":"10.1051/meca/2023032","DOIUrl":null,"url":null,"abstract":"The automotive industry is undergoing significant changes driven by factors such as reducing carbon dioxide emissions, advancing technology, evolving regulations, and the emergence of new energy sources. Lightweight materials, particularly aluminum alloys, are being extensively researched and integrated into vehicles to reduce weight and improve performance. However, the heating process during vehicle production can cause thermal buckling in thin aluminum alloy structures, affecting their appearance and quality. While thermal buckling has been studied in other industries, research in the automotive sector, particularly for non-structural parts like car roofs, is limited. This study uses numerical simulation to predict thermal buckling and post-buckling behavior of a EN AW 6016-T4 alloy car roof assembled in a predominantly steel body-in-white. The research findings indicate that roof buckling occurs at a relatively low temperature difference of approximately 60 °C, which is lower than the maximum temperatures experienced during the painting phases in the automotive industry. Consequently, undulations in the roof's shape become apparent, underscoring the importance of design modifications to ensure visual conformity. Validation through physical testing confirms the model's accuracy, providing valuable insights for designing lightweight structures with improved performance and aesthetics.","PeriodicalId":49018,"journal":{"name":"Mechanics & Industry","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical investigation of thermal buckling and post-buckling behavior of an EN AW 6016-T4 car roof assembled in a steel body-in-white\",\"authors\":\"Leandro M. da Silva, Christophe Cellard, Edouard Geslain, Laurent Sohier, Olivier Ponte-Felgueiras, Romain Créac'hcadec\",\"doi\":\"10.1051/meca/2023032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The automotive industry is undergoing significant changes driven by factors such as reducing carbon dioxide emissions, advancing technology, evolving regulations, and the emergence of new energy sources. Lightweight materials, particularly aluminum alloys, are being extensively researched and integrated into vehicles to reduce weight and improve performance. However, the heating process during vehicle production can cause thermal buckling in thin aluminum alloy structures, affecting their appearance and quality. While thermal buckling has been studied in other industries, research in the automotive sector, particularly for non-structural parts like car roofs, is limited. This study uses numerical simulation to predict thermal buckling and post-buckling behavior of a EN AW 6016-T4 alloy car roof assembled in a predominantly steel body-in-white. The research findings indicate that roof buckling occurs at a relatively low temperature difference of approximately 60 °C, which is lower than the maximum temperatures experienced during the painting phases in the automotive industry. Consequently, undulations in the roof's shape become apparent, underscoring the importance of design modifications to ensure visual conformity. Validation through physical testing confirms the model's accuracy, providing valuable insights for designing lightweight structures with improved performance and aesthetics.\",\"PeriodicalId\":49018,\"journal\":{\"name\":\"Mechanics & Industry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics & Industry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/meca/2023032\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics & Industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/meca/2023032","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

在二氧化碳排放减少、技术进步、法规发展和新能源出现等因素的推动下,汽车行业正在发生重大变化。轻量化材料,特别是铝合金,正在被广泛研究并集成到车辆中,以减轻重量和提高性能。然而,汽车生产过程中的加热过程会引起薄铝合金结构的热屈曲,影响其外观和质量。虽然热屈曲已经在其他行业得到了研究,但在汽车领域的研究,特别是对车顶等非结构部件的研究还很有限。本研究采用数值模拟的方法预测了一种以钢为主的白车身装配的ena6016 - t4合金车顶的热屈曲和后屈曲行为。研究结果表明,车顶屈曲发生在相对较低的温差下,约为60°C,低于汽车行业涂装阶段所经历的最高温度。因此,屋顶形状的波动变得明显,强调了设计修改的重要性,以确保视觉上的一致性。通过物理测试验证了模型的准确性,为设计具有改进性能和美观的轻质结构提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical investigation of thermal buckling and post-buckling behavior of an EN AW 6016-T4 car roof assembled in a steel body-in-white
The automotive industry is undergoing significant changes driven by factors such as reducing carbon dioxide emissions, advancing technology, evolving regulations, and the emergence of new energy sources. Lightweight materials, particularly aluminum alloys, are being extensively researched and integrated into vehicles to reduce weight and improve performance. However, the heating process during vehicle production can cause thermal buckling in thin aluminum alloy structures, affecting their appearance and quality. While thermal buckling has been studied in other industries, research in the automotive sector, particularly for non-structural parts like car roofs, is limited. This study uses numerical simulation to predict thermal buckling and post-buckling behavior of a EN AW 6016-T4 alloy car roof assembled in a predominantly steel body-in-white. The research findings indicate that roof buckling occurs at a relatively low temperature difference of approximately 60 °C, which is lower than the maximum temperatures experienced during the painting phases in the automotive industry. Consequently, undulations in the roof's shape become apparent, underscoring the importance of design modifications to ensure visual conformity. Validation through physical testing confirms the model's accuracy, providing valuable insights for designing lightweight structures with improved performance and aesthetics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanics & Industry
Mechanics & Industry ENGINEERING, MECHANICAL-MECHANICS
CiteScore
2.80
自引率
0.00%
发文量
25
审稿时长
>12 weeks
期刊介绍: An International Journal on Mechanical Sciences and Engineering Applications With papers from industry, Research and Development departments and academic institutions, this journal acts as an interface between research and industry, coordinating and disseminating scientific and technical mechanical research in relation to industrial activities. Targeted readers are technicians, engineers, executives, researchers, and teachers who are working in industrial companies as managers or in Research and Development departments, technical centres, laboratories, universities, technical and engineering schools. The journal is an AFM (Association Française de Mécanique) publication.
期刊最新文献
Numerical investigation of thermal buckling and post-buckling behavior of an EN AW 6016-T4 car roof assembled in a steel body-in-white Analyzing the influence of lifter design and ball mill speed on grinding performance, particle behavior and contact forces A neural network-based data-driven local modeling of spotwelded plates under impact Multi-objective shape optimization of developable Bézier-like surfaces using non-dominated sorting genetic algorithm Experimental quantification of heat haze errors in stereo-DIC displacements: Application to thermoplastics thermoforming temperature range
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1