{"title":"Midori的中接差动故障分析","authors":"Chunyan An, Wei Bai, Donglei Zhang","doi":"10.3934/era.2023344","DOIUrl":null,"url":null,"abstract":"<abstract><p>Midori is a lightweight block cipher designed by Banik et al. and presented at the ASIACRYPT 2015 conference. According to the block size, it consists of two algorithms, denoted as Midori-64 and Midori-128. Midori generates 8-bit S-Boxes from 4-bit S-Boxes and applies almost MDS matrices instead of MDS matrices. In this paper, we introduce the meet-in-the-middle fault attack model in the 4-round cell-oriented fault propagation trail and reduce the key space in the last round by $ 2^{45.71} $ and $ 2^{39.86} $ for Midori-64 and Midori-128, respectively. For Midori-64, we reduce the time complexity from $ 2^{80} $ to $ 2^{28} $, $ 2^{32} $ and $ 2^{56} $ for the different single fault injection approaches. For Midori-128, we provide a 4-round fault attack method, which slightly increases the complexity compared to previous attacks. Our results indicate that the first and last four rounds of Midori must be protected to achieve its security.</p></abstract>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Meet-in-the-middle differential fault analysis on Midori\",\"authors\":\"Chunyan An, Wei Bai, Donglei Zhang\",\"doi\":\"10.3934/era.2023344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<abstract><p>Midori is a lightweight block cipher designed by Banik et al. and presented at the ASIACRYPT 2015 conference. According to the block size, it consists of two algorithms, denoted as Midori-64 and Midori-128. Midori generates 8-bit S-Boxes from 4-bit S-Boxes and applies almost MDS matrices instead of MDS matrices. In this paper, we introduce the meet-in-the-middle fault attack model in the 4-round cell-oriented fault propagation trail and reduce the key space in the last round by $ 2^{45.71} $ and $ 2^{39.86} $ for Midori-64 and Midori-128, respectively. For Midori-64, we reduce the time complexity from $ 2^{80} $ to $ 2^{28} $, $ 2^{32} $ and $ 2^{56} $ for the different single fault injection approaches. For Midori-128, we provide a 4-round fault attack method, which slightly increases the complexity compared to previous attacks. Our results indicate that the first and last four rounds of Midori must be protected to achieve its security.</p></abstract>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/era.2023344\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/era.2023344","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Meet-in-the-middle differential fault analysis on Midori
Midori is a lightweight block cipher designed by Banik et al. and presented at the ASIACRYPT 2015 conference. According to the block size, it consists of two algorithms, denoted as Midori-64 and Midori-128. Midori generates 8-bit S-Boxes from 4-bit S-Boxes and applies almost MDS matrices instead of MDS matrices. In this paper, we introduce the meet-in-the-middle fault attack model in the 4-round cell-oriented fault propagation trail and reduce the key space in the last round by $ 2^{45.71} $ and $ 2^{39.86} $ for Midori-64 and Midori-128, respectively. For Midori-64, we reduce the time complexity from $ 2^{80} $ to $ 2^{28} $, $ 2^{32} $ and $ 2^{56} $ for the different single fault injection approaches. For Midori-128, we provide a 4-round fault attack method, which slightly increases the complexity compared to previous attacks. Our results indicate that the first and last four rounds of Midori must be protected to achieve its security.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.