Prashant Kumar, Sarvesh Kumar Sonkar, Riya Catherine George, Ajoy Kanti Ghosh, Deepu Philip
{"title":"基于真实飞行数据的中等迎角神经人工蜂群融合算法气动参数估计","authors":"Prashant Kumar, Sarvesh Kumar Sonkar, Riya Catherine George, Ajoy Kanti Ghosh, Deepu Philip","doi":"10.1177/09544100231201215","DOIUrl":null,"url":null,"abstract":"Aircraft system identification aims to estimate the aerodynamic force and moment coefficients utilizing intelligent modeling and parametric identification methodologies. Classical methods like output, filter, and equation error methods apply extensively as parametric approaches. In contrast, machine learning approaches like Artificial Neural Networks (ANN), Adaptive Neuro-Fuzzy Inference Systems (ANFIS), etc., are alternatives to model-based methods. This work presents a novel aerodynamic parameters estimation technique that fuses two biologically inspired optimization techniques, (i) the Artificial Bee Colony (ABC) optimization and (ii) ANN for an actual aircraft while incorporating system and measurement uncertainty. The fusion of ABC and ANN imparts the ability to address sensor noise challenges associated with system identification and parameter estimation. Comparison of the proposed method’s results with the benchmark techniques like Least Square, Filter Error, and Neural Gauss Methods using recorded flight data of the ATTAS (DLR German Aerospace Centre) and HANSA-3 (IIT Kanpur) aircrafts established its adequacy and efficacy. Furthermore, the capability of the proposed hybrid method to extract stability and control variables from the stable aircraft kinematics is shown even with insufficient information in its data history.","PeriodicalId":54566,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","volume":"49 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of aerodynamic parameters using neural artificial bee colony fusion algorithm for moderate angle of attack using real flight data\",\"authors\":\"Prashant Kumar, Sarvesh Kumar Sonkar, Riya Catherine George, Ajoy Kanti Ghosh, Deepu Philip\",\"doi\":\"10.1177/09544100231201215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aircraft system identification aims to estimate the aerodynamic force and moment coefficients utilizing intelligent modeling and parametric identification methodologies. Classical methods like output, filter, and equation error methods apply extensively as parametric approaches. In contrast, machine learning approaches like Artificial Neural Networks (ANN), Adaptive Neuro-Fuzzy Inference Systems (ANFIS), etc., are alternatives to model-based methods. This work presents a novel aerodynamic parameters estimation technique that fuses two biologically inspired optimization techniques, (i) the Artificial Bee Colony (ABC) optimization and (ii) ANN for an actual aircraft while incorporating system and measurement uncertainty. The fusion of ABC and ANN imparts the ability to address sensor noise challenges associated with system identification and parameter estimation. Comparison of the proposed method’s results with the benchmark techniques like Least Square, Filter Error, and Neural Gauss Methods using recorded flight data of the ATTAS (DLR German Aerospace Centre) and HANSA-3 (IIT Kanpur) aircrafts established its adequacy and efficacy. Furthermore, the capability of the proposed hybrid method to extract stability and control variables from the stable aircraft kinematics is shown even with insufficient information in its data history.\",\"PeriodicalId\":54566,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/09544100231201215\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09544100231201215","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Estimation of aerodynamic parameters using neural artificial bee colony fusion algorithm for moderate angle of attack using real flight data
Aircraft system identification aims to estimate the aerodynamic force and moment coefficients utilizing intelligent modeling and parametric identification methodologies. Classical methods like output, filter, and equation error methods apply extensively as parametric approaches. In contrast, machine learning approaches like Artificial Neural Networks (ANN), Adaptive Neuro-Fuzzy Inference Systems (ANFIS), etc., are alternatives to model-based methods. This work presents a novel aerodynamic parameters estimation technique that fuses two biologically inspired optimization techniques, (i) the Artificial Bee Colony (ABC) optimization and (ii) ANN for an actual aircraft while incorporating system and measurement uncertainty. The fusion of ABC and ANN imparts the ability to address sensor noise challenges associated with system identification and parameter estimation. Comparison of the proposed method’s results with the benchmark techniques like Least Square, Filter Error, and Neural Gauss Methods using recorded flight data of the ATTAS (DLR German Aerospace Centre) and HANSA-3 (IIT Kanpur) aircrafts established its adequacy and efficacy. Furthermore, the capability of the proposed hybrid method to extract stability and control variables from the stable aircraft kinematics is shown even with insufficient information in its data history.
期刊介绍:
The Journal of Aerospace Engineering is dedicated to the publication of high quality research in all branches of applied sciences and technology dealing with aircraft and spacecraft, and their support systems. "Our authorship is truly international and all efforts are made to ensure that each paper is presented in the best possible way and reaches a wide audience.
"The Editorial Board is composed of recognized experts representing the technical communities of fifteen countries. The Board Members work in close cooperation with the editors, reviewers, and authors to achieve a consistent standard of well written and presented papers."Professor Rodrigo Martinez-Val, Universidad Politécnica de Madrid, Spain
This journal is a member of the Committee on Publication Ethics (COPE).