基于Landsat图像和CA-ANN机器学习技术的城市热岛和土地利用土地覆盖变化的时空分析——以埃及达卡利亚政府为例

IF 1 4区 地球科学 Q4 GEOGRAPHY, PHYSICAL Journal of Spatial Science Pub Date : 2023-09-19 DOI:10.1080/14498596.2023.2257619
Sara Sameh, Fawzi H. Zarzoura, Mahmoud El-Mewafi
{"title":"基于Landsat图像和CA-ANN机器学习技术的城市热岛和土地利用土地覆盖变化的时空分析——以埃及达卡利亚政府为例","authors":"Sara Sameh, Fawzi H. Zarzoura, Mahmoud El-Mewafi","doi":"10.1080/14498596.2023.2257619","DOIUrl":null,"url":null,"abstract":"ABSTRACTThis study explores the relationship between Land Use Land Cover (LULC), Land Surface Temperature (LST), and Urban Heat Island (UHI) in Dakahlia Government using Landsat 8 images from 2014 to 2020. Support Vector Machine (SVM) and Mono-Window Algorithm were used to generate LULC and estimate LST. Results reveal an increase in built-up areas, rising LST, and variable UHI thresholds. The study highlights the impact of COVID-19 on LST in 2020. Positive correlations between LST and Normalized difference build-up index (NDBI) and negative correlations with Normalized difference vegetation index (NDVI) were observed. Projections for 2030 suggest an increase in high-temperature areas.KEYWORDS: Land Surface TemperatureUrban Heat Islandland use land coverLULC indicesCA-ANN algorithm Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":50045,"journal":{"name":"Journal of Spatial Science","volume":"11 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatiotemporal analysis of Urban Heat Island and land use land cover changes using Landsat images and CA-ANN machine learning techniques: a case study of Dakahlia government, Egypt\",\"authors\":\"Sara Sameh, Fawzi H. Zarzoura, Mahmoud El-Mewafi\",\"doi\":\"10.1080/14498596.2023.2257619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACTThis study explores the relationship between Land Use Land Cover (LULC), Land Surface Temperature (LST), and Urban Heat Island (UHI) in Dakahlia Government using Landsat 8 images from 2014 to 2020. Support Vector Machine (SVM) and Mono-Window Algorithm were used to generate LULC and estimate LST. Results reveal an increase in built-up areas, rising LST, and variable UHI thresholds. The study highlights the impact of COVID-19 on LST in 2020. Positive correlations between LST and Normalized difference build-up index (NDBI) and negative correlations with Normalized difference vegetation index (NDVI) were observed. Projections for 2030 suggest an increase in high-temperature areas.KEYWORDS: Land Surface TemperatureUrban Heat Islandland use land coverLULC indicesCA-ANN algorithm Disclosure statementNo potential conflict of interest was reported by the author(s).\",\"PeriodicalId\":50045,\"journal\":{\"name\":\"Journal of Spatial Science\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Spatial Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/14498596.2023.2257619\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spatial Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/14498596.2023.2257619","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要利用2014 - 2020年的Landsat 8影像,研究了达喀利亚省土地利用、土地覆盖、地表温度和城市热岛之间的关系。采用支持向量机(SVM)和单窗算法生成LULC和估计LST。结果显示建成区增加,地表温度上升,城市热岛指数阈值变化。该研究强调了2019冠状病毒病对2020年LST的影响。地表温度与归一化植被指数(NDVI)呈负相关,与植被指数(NDBI)呈正相关。对2030年的预测表明,高温地区将会增加。关键词:地表温度城市热岛土地利用土地覆盖lulc指数ca - ann算法披露声明作者未报告潜在利益冲突。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatiotemporal analysis of Urban Heat Island and land use land cover changes using Landsat images and CA-ANN machine learning techniques: a case study of Dakahlia government, Egypt
ABSTRACTThis study explores the relationship between Land Use Land Cover (LULC), Land Surface Temperature (LST), and Urban Heat Island (UHI) in Dakahlia Government using Landsat 8 images from 2014 to 2020. Support Vector Machine (SVM) and Mono-Window Algorithm were used to generate LULC and estimate LST. Results reveal an increase in built-up areas, rising LST, and variable UHI thresholds. The study highlights the impact of COVID-19 on LST in 2020. Positive correlations between LST and Normalized difference build-up index (NDBI) and negative correlations with Normalized difference vegetation index (NDVI) were observed. Projections for 2030 suggest an increase in high-temperature areas.KEYWORDS: Land Surface TemperatureUrban Heat Islandland use land coverLULC indicesCA-ANN algorithm Disclosure statementNo potential conflict of interest was reported by the author(s).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Spatial Science
Journal of Spatial Science 地学-地质学
CiteScore
5.00
自引率
5.30%
发文量
25
审稿时长
>12 weeks
期刊介绍: The Journal of Spatial Science publishes papers broadly across the spatial sciences including such areas as cartography, geodesy, geographic information science, hydrography, digital image analysis and photogrammetry, remote sensing, surveying and related areas. Two types of papers are published by he journal: Research Papers and Professional Papers. Research Papers (including reviews) are peer-reviewed and must meet a minimum standard of making a contribution to the knowledge base of an area of the spatial sciences. This can be achieved through the empirical or theoretical contribution to knowledge that produces significant new outcomes. It is anticipated that Professional Papers will be written by industry practitioners. Professional Papers describe innovative aspects of professional practise and applications that advance the development of the spatial industry.
期刊最新文献
Analysis of vegetation influence on building shadow extraction in remote sensing imagery using deep convolutional neural networks A novel approach to coral species classification using deep learning and unsupervised feature extraction Land cover classification in high-resolution remote sensing: using Swin Transformer deep learning with texture features A change detection algorithm for the SAR images based on DWT and DE optimization Predicting land use and land cover change dynamics in the eThekwini Municipality: a machine learning approach with Landsat imagery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1