Nailya S. Akhmadullina, Valentin D. Borzosekov, Nina N. Skvortsova, Vladimir D. Stepakhin, Namik G. Gusein-Zade, Dmitriy V. Malakhov, Alexander V. Knyazev, Tatiana E. Gayanova, Anastasiya K. Kozak, Alexander S. Sokolov, Karen A. Sarksyan, Aleksey V. Ishchenko, Ilya A. Weinstein, Victor I. Grokhovsky, Oleg N. Shishilov
{"title":"察雷夫陨石物质与强大回旋加速器辐射的相互作用:尘埃等离子体云的形成和相变","authors":"Nailya S. Akhmadullina, Valentin D. Borzosekov, Nina N. Skvortsova, Vladimir D. Stepakhin, Namik G. Gusein-Zade, Dmitriy V. Malakhov, Alexander V. Knyazev, Tatiana E. Gayanova, Anastasiya K. Kozak, Alexander S. Sokolov, Karen A. Sarksyan, Aleksey V. Ishchenko, Ilya A. Weinstein, Victor I. Grokhovsky, Oleg N. Shishilov","doi":"10.1080/15361055.2023.2250669","DOIUrl":null,"url":null,"abstract":"AbstractA new approach for simulation of the interaction of space and lunar dust with the surface of spacecrafts has been proposed. The approach is based on creating a dusty plasma cloud when the substance imitating the space or lunar dust is treated with high-power pulsed microwave radiation in the developed experimental facility. The facility consists of a high-power gyrotron (75 GHz, 0.8 MW); a plasma-chemical reactor; and a diagnostic complex, which includes optical emission spectrometers and a high-speed camera. The approach has been tested using the substance of the Tsarev meteorite, which represents a typical substance of meteorites. It was found that the substance mainly keeps the phase composition; however, the particles change their morphology due to rapid heating and melting.Keywords: Plasmaspace dustlunar dustsimulationmicrowave Disclosure StatementNo potential conflict of interest was reported by the author(s).Supplementary MaterialSupplemental data for this article can be accessed online at https://doi.org/10.1080/15361055.2023.2250669.Additional informationFundingThis work is supported by the Ministry of Science and Higher Education of the Russian Federation, project FEUZ-2023-0014.","PeriodicalId":12626,"journal":{"name":"Fusion Science and Technology","volume":"11 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interaction of the Substance of the Tsarev Meteorite with Radiation from a Powerful Gyrotron: Dusty Plasma Cloud Formation and Phase Transformations\",\"authors\":\"Nailya S. Akhmadullina, Valentin D. Borzosekov, Nina N. Skvortsova, Vladimir D. Stepakhin, Namik G. Gusein-Zade, Dmitriy V. Malakhov, Alexander V. Knyazev, Tatiana E. Gayanova, Anastasiya K. Kozak, Alexander S. Sokolov, Karen A. Sarksyan, Aleksey V. Ishchenko, Ilya A. Weinstein, Victor I. Grokhovsky, Oleg N. Shishilov\",\"doi\":\"10.1080/15361055.2023.2250669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractA new approach for simulation of the interaction of space and lunar dust with the surface of spacecrafts has been proposed. The approach is based on creating a dusty plasma cloud when the substance imitating the space or lunar dust is treated with high-power pulsed microwave radiation in the developed experimental facility. The facility consists of a high-power gyrotron (75 GHz, 0.8 MW); a plasma-chemical reactor; and a diagnostic complex, which includes optical emission spectrometers and a high-speed camera. The approach has been tested using the substance of the Tsarev meteorite, which represents a typical substance of meteorites. It was found that the substance mainly keeps the phase composition; however, the particles change their morphology due to rapid heating and melting.Keywords: Plasmaspace dustlunar dustsimulationmicrowave Disclosure StatementNo potential conflict of interest was reported by the author(s).Supplementary MaterialSupplemental data for this article can be accessed online at https://doi.org/10.1080/15361055.2023.2250669.Additional informationFundingThis work is supported by the Ministry of Science and Higher Education of the Russian Federation, project FEUZ-2023-0014.\",\"PeriodicalId\":12626,\"journal\":{\"name\":\"Fusion Science and Technology\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fusion Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15361055.2023.2250669\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fusion Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15361055.2023.2250669","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Interaction of the Substance of the Tsarev Meteorite with Radiation from a Powerful Gyrotron: Dusty Plasma Cloud Formation and Phase Transformations
AbstractA new approach for simulation of the interaction of space and lunar dust with the surface of spacecrafts has been proposed. The approach is based on creating a dusty plasma cloud when the substance imitating the space or lunar dust is treated with high-power pulsed microwave radiation in the developed experimental facility. The facility consists of a high-power gyrotron (75 GHz, 0.8 MW); a plasma-chemical reactor; and a diagnostic complex, which includes optical emission spectrometers and a high-speed camera. The approach has been tested using the substance of the Tsarev meteorite, which represents a typical substance of meteorites. It was found that the substance mainly keeps the phase composition; however, the particles change their morphology due to rapid heating and melting.Keywords: Plasmaspace dustlunar dustsimulationmicrowave Disclosure StatementNo potential conflict of interest was reported by the author(s).Supplementary MaterialSupplemental data for this article can be accessed online at https://doi.org/10.1080/15361055.2023.2250669.Additional informationFundingThis work is supported by the Ministry of Science and Higher Education of the Russian Federation, project FEUZ-2023-0014.
期刊介绍:
Fusion Science and Technology, a research journal of the American Nuclear Society, publishes original research and review papers on fusion plasma physics and plasma engineering, fusion nuclear technology and materials science, fusion plasma enabling science technology, fusion applications, and fusion design and systems studies.