偏心排列的类墩结构局部时效冲刷方程

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-09-19 DOI:10.1680/jwama.23.00006
Buddhadev Nandi, Subhasish Das
{"title":"偏心排列的类墩结构局部时效冲刷方程","authors":"Buddhadev Nandi, Subhasish Das","doi":"10.1680/jwama.23.00006","DOIUrl":null,"url":null,"abstract":"Excess scour developing around tandem and eccentric piers of side-by-side bridges may aggravate bridge failure. Thinking differently, this kind of pier-like structure combination may increase scour and shift sediments towards the bank which may help in self-dredging. Therefore, accurate estimation of temporal scour depth (d st ) around such piers is getting the utmost priority nowadays. However, very little work has been done in this regard. Most of the previous equations predict d st only for isolated pier. In the present study, 2-3 piers were placed eccentrically inline in addition to isolated piers to empirically derive equations for accurately predicting d st considering circular, triangular and square pier shapes. Present experimental results for isolated circular pier are validated using literature equations and also cross-validated with other literatures experimental data. Predictive equations are proposed for 2-3 piers with eccentrically inline arrangements, taking their intermediate spacing's as key variables. These equations are established based on dimensional analysis and non-linear regression. Overall analysis reveals that the estimated temporal scour depths based on the proposed integrated equation are closely within the ±80% accuracy band. The proposed equations can be used to accurately predict temporal scour for selected combinations of piers within the given experimental ranges.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equation for localized time-dependent scour at pier-like structures with eccentric inline arrangements\",\"authors\":\"Buddhadev Nandi, Subhasish Das\",\"doi\":\"10.1680/jwama.23.00006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Excess scour developing around tandem and eccentric piers of side-by-side bridges may aggravate bridge failure. Thinking differently, this kind of pier-like structure combination may increase scour and shift sediments towards the bank which may help in self-dredging. Therefore, accurate estimation of temporal scour depth (d st ) around such piers is getting the utmost priority nowadays. However, very little work has been done in this regard. Most of the previous equations predict d st only for isolated pier. In the present study, 2-3 piers were placed eccentrically inline in addition to isolated piers to empirically derive equations for accurately predicting d st considering circular, triangular and square pier shapes. Present experimental results for isolated circular pier are validated using literature equations and also cross-validated with other literatures experimental data. Predictive equations are proposed for 2-3 piers with eccentrically inline arrangements, taking their intermediate spacing's as key variables. These equations are established based on dimensional analysis and non-linear regression. Overall analysis reveals that the estimated temporal scour depths based on the proposed integrated equation are closely within the ±80% accuracy band. The proposed equations can be used to accurately predict temporal scour for selected combinations of piers within the given experimental ranges.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1680/jwama.23.00006\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1680/jwama.23.00006","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

并排式桥梁的串连墩和偏心墩周围过度冲刷会加剧桥梁的破坏。换句话说,这种桩状结构组合可能会增加冲刷并将沉积物移向河岸,这可能有助于自疏浚。因此,准确估算此类桥墩周围冲刷深度(d st)已成为当前最重要的问题。然而,在这方面所做的工作很少。以往的方程大多只对孤立桥墩进行预测。在本研究中,除了孤立的桥墩外,还将2-3个桥墩偏心内线放置,以经验推导出考虑圆形、三角形和方形桥墩形状的准确预测st的方程。本文的实验结果采用文献方程进行了验证,并与其他文献的实验数据进行了交叉验证。以中间间距为关键变量,建立了2-3个偏心线列桥墩的预测方程。这些方程是基于量纲分析和非线性回归建立的。综合分析表明,基于该积分方程估算的时间冲刷深度精度在±80%以内。所提出的方程可用于在给定的实验范围内准确预测所选桥墩组合的时间冲刷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Equation for localized time-dependent scour at pier-like structures with eccentric inline arrangements
Excess scour developing around tandem and eccentric piers of side-by-side bridges may aggravate bridge failure. Thinking differently, this kind of pier-like structure combination may increase scour and shift sediments towards the bank which may help in self-dredging. Therefore, accurate estimation of temporal scour depth (d st ) around such piers is getting the utmost priority nowadays. However, very little work has been done in this regard. Most of the previous equations predict d st only for isolated pier. In the present study, 2-3 piers were placed eccentrically inline in addition to isolated piers to empirically derive equations for accurately predicting d st considering circular, triangular and square pier shapes. Present experimental results for isolated circular pier are validated using literature equations and also cross-validated with other literatures experimental data. Predictive equations are proposed for 2-3 piers with eccentrically inline arrangements, taking their intermediate spacing's as key variables. These equations are established based on dimensional analysis and non-linear regression. Overall analysis reveals that the estimated temporal scour depths based on the proposed integrated equation are closely within the ±80% accuracy band. The proposed equations can be used to accurately predict temporal scour for selected combinations of piers within the given experimental ranges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1