空间天气对南部非洲中纬度地区电离层的影响

IF 3 3区 地球科学 Earth, Planets and Space Pub Date : 2023-09-19 DOI:10.1186/s40623-023-01894-5
Tshimangadzo Merline Matamba, Donald W. Danskin, Rendani R. Nndanganeni, Mpho Tshisaphungo
{"title":"空间天气对南部非洲中纬度地区电离层的影响","authors":"Tshimangadzo Merline Matamba, Donald W. Danskin, Rendani R. Nndanganeni, Mpho Tshisaphungo","doi":"10.1186/s40623-023-01894-5","DOIUrl":null,"url":null,"abstract":"Abstract The ionosphere suffers major perturbations during severe space weather events such as Coronal Mass Ejections (CMEs), solar flares, high-speed streams, and Corotating Interaction Regions (CIRs). The ionosphere can experience depletions or enhancements in Total Electron Content (TEC) during severe space weather conditions. The South African National Space Agency (SANSA) near-real-time (NRT) TEC maps were used to show the ionospheric variability during the geomagnetic storm of 3–8 Nov 2021 over the southern Africa mid-latitude region. The ionosonde TEC, NRT TEC, and the quiet-time AfriTEC model were compared during the 6-day period. A negative ionospheric response was observed during the main and recovery phases of the geomagnetic storm (4–5 Nov 2021). The changes to neutral composition O/N 2 was one of the physical processes attributed to the decrease in TEC over the mid-latitude region. The GPS TEC maps showed a very good agreement with ionosonde measurements and the AfriTEC model. A strong east–west TEC gradient was observed occurring between two ionosonde stations. Graphical Abstract","PeriodicalId":11409,"journal":{"name":"Earth, Planets and Space","volume":"38 1","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Space weather impacts on the ionosphere over the southern African mid-latitude region\",\"authors\":\"Tshimangadzo Merline Matamba, Donald W. Danskin, Rendani R. Nndanganeni, Mpho Tshisaphungo\",\"doi\":\"10.1186/s40623-023-01894-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The ionosphere suffers major perturbations during severe space weather events such as Coronal Mass Ejections (CMEs), solar flares, high-speed streams, and Corotating Interaction Regions (CIRs). The ionosphere can experience depletions or enhancements in Total Electron Content (TEC) during severe space weather conditions. The South African National Space Agency (SANSA) near-real-time (NRT) TEC maps were used to show the ionospheric variability during the geomagnetic storm of 3–8 Nov 2021 over the southern Africa mid-latitude region. The ionosonde TEC, NRT TEC, and the quiet-time AfriTEC model were compared during the 6-day period. A negative ionospheric response was observed during the main and recovery phases of the geomagnetic storm (4–5 Nov 2021). The changes to neutral composition O/N 2 was one of the physical processes attributed to the decrease in TEC over the mid-latitude region. The GPS TEC maps showed a very good agreement with ionosonde measurements and the AfriTEC model. A strong east–west TEC gradient was observed occurring between two ionosonde stations. Graphical Abstract\",\"PeriodicalId\":11409,\"journal\":{\"name\":\"Earth, Planets and Space\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth, Planets and Space\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40623-023-01894-5\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth, Planets and Space","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40623-023-01894-5","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在日冕物质抛射(cme)、太阳耀斑、高速流和旋转相互作用区(CIRs)等严重的空间天气事件中,电离层受到较大的扰动。在恶劣的空间天气条件下,电离层会经历总电子含量(TEC)的消耗或增强。利用南非国家航天局(SANSA)的近实时(NRT) TEC地图显示了2021年11月3日至8日非洲南部中纬度地区地磁风暴期间电离层的变化。在6天的时间内比较了离子探空TEC、NRT TEC和安静时间AfriTEC模型。在地磁风暴的主要阶段和恢复阶段(2021年11月4日至5日),观测到电离层负响应。中性组分O/ n2的变化是导致中纬度地区TEC减少的物理过程之一。GPS TEC地图显示与电离层探空仪测量和AfriTEC模型非常吻合。在两个电离层探空站之间观测到强烈的东西向TEC梯度。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Space weather impacts on the ionosphere over the southern African mid-latitude region
Abstract The ionosphere suffers major perturbations during severe space weather events such as Coronal Mass Ejections (CMEs), solar flares, high-speed streams, and Corotating Interaction Regions (CIRs). The ionosphere can experience depletions or enhancements in Total Electron Content (TEC) during severe space weather conditions. The South African National Space Agency (SANSA) near-real-time (NRT) TEC maps were used to show the ionospheric variability during the geomagnetic storm of 3–8 Nov 2021 over the southern Africa mid-latitude region. The ionosonde TEC, NRT TEC, and the quiet-time AfriTEC model were compared during the 6-day period. A negative ionospheric response was observed during the main and recovery phases of the geomagnetic storm (4–5 Nov 2021). The changes to neutral composition O/N 2 was one of the physical processes attributed to the decrease in TEC over the mid-latitude region. The GPS TEC maps showed a very good agreement with ionosonde measurements and the AfriTEC model. A strong east–west TEC gradient was observed occurring between two ionosonde stations. Graphical Abstract
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth, Planets and Space
Earth, Planets and Space 地学天文-地球科学综合
CiteScore
5.80
自引率
16.70%
发文量
167
期刊介绍: Earth, Planets and Space (EPS) covers scientific articles in Earth and Planetary Sciences, particularly geomagnetism, aeronomy, space science, seismology, volcanology, geodesy, and planetary science. EPS also welcomes articles in new and interdisciplinary subjects, including instrumentations. Only new and original contents will be accepted for publication.
期刊最新文献
Performance of the double-thin-shell approach for studying nighttime medium-scale traveling ionospheric disturbances using two dense GNSS observation networks in Japan Three-dimensional velocity structure models in and around the Kathmandu Valley, Central Nepal A novel high accuracy finite-difference time-domain method Geomagnetic relative paleointensity and direction during the last 40,000 years obtained from a sediment core in the Nankai Trough Can we explain the post-2015 absence of the Chandler wobble?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1