酶- mof复合材料在180℃时的高热稳定性

Q3 Chemistry Chemistry Pub Date : 2023-09-19 DOI:10.3390/chemistry5030137
Shitong Cui, Jun Ge
{"title":"酶- mof复合材料在180℃时的高热稳定性","authors":"Shitong Cui, Jun Ge","doi":"10.3390/chemistry5030137","DOIUrl":null,"url":null,"abstract":"Encapsulating enzymes in a tailored scaffold is of great potential in industrial enzymatic catalysis, which can enhance the stability of enzymes thus expanding their applications. Metal–organic frameworks (MOFs) are emerging as promising candidates for enzyme encapsulation due to their precise pore structure, ease of synthesis and good biocompatibility. Despite the fact that enzymes encapsulated in MOFs can obtain enhanced stability, there has been little discussion about the thermal stability of enzyme-MOF composites in solid state under extremely high temperatures. Herein, we fabricated the enzyme-MOF composites, CALB-ZIF-8, via a convenient coprecipitation method in aqueous solution, which exhibited good thermal stability at 180 °C. It was found that the activity of CALB encapsulated in ZIF-8 retained nearly ~80% after heating for 10 min at 180 °C. A finite element method was applied to investigate the heat transfer process within a ZIF-8 model, indicating that the air filled in cavities of ZIF-8 played a significant role in hindering the heat transfer and this may be an important reason for the outstanding thermal stability of CALB-ZIF-8 at 180 °C, which paves a new path for expanding the industrial application of enzyme-MOF composites.","PeriodicalId":9850,"journal":{"name":"Chemistry","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High Thermal Stability of Enzyme-MOF Composites at 180 °C\",\"authors\":\"Shitong Cui, Jun Ge\",\"doi\":\"10.3390/chemistry5030137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Encapsulating enzymes in a tailored scaffold is of great potential in industrial enzymatic catalysis, which can enhance the stability of enzymes thus expanding their applications. Metal–organic frameworks (MOFs) are emerging as promising candidates for enzyme encapsulation due to their precise pore structure, ease of synthesis and good biocompatibility. Despite the fact that enzymes encapsulated in MOFs can obtain enhanced stability, there has been little discussion about the thermal stability of enzyme-MOF composites in solid state under extremely high temperatures. Herein, we fabricated the enzyme-MOF composites, CALB-ZIF-8, via a convenient coprecipitation method in aqueous solution, which exhibited good thermal stability at 180 °C. It was found that the activity of CALB encapsulated in ZIF-8 retained nearly ~80% after heating for 10 min at 180 °C. A finite element method was applied to investigate the heat transfer process within a ZIF-8 model, indicating that the air filled in cavities of ZIF-8 played a significant role in hindering the heat transfer and this may be an important reason for the outstanding thermal stability of CALB-ZIF-8 at 180 °C, which paves a new path for expanding the industrial application of enzyme-MOF composites.\",\"PeriodicalId\":9850,\"journal\":{\"name\":\"Chemistry\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/chemistry5030137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/chemistry5030137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

摘要

将酶包裹在一个定制的支架中,可以提高酶的稳定性,从而扩大酶的应用范围,在工业酶催化中具有很大的潜力。金属-有机骨架(MOFs)由于其精确的孔结构、易于合成和良好的生物相容性而成为酶包封的有前途的候选材料。尽管酶包封在mof中可以获得增强的稳定性,但对于酶- mof复合材料在极高温度下的固态热稳定性的讨论却很少。本研究利用共沉淀法在水溶液中制备了酶- mof复合物CALB-ZIF-8,该复合物在180℃下具有良好的热稳定性。结果表明,在180℃下加热10 min后,包裹在ZIF-8中的CALB的活性保持在80%左右。采用有限元方法对ZIF-8模型内的传热过程进行了研究,结果表明,ZIF-8的空腔内充满的空气对传热起着重要的阻碍作用,这可能是CALB-ZIF-8在180℃下具有优异热稳定性的重要原因,这为扩大酶- mof复合材料的工业应用开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High Thermal Stability of Enzyme-MOF Composites at 180 °C
Encapsulating enzymes in a tailored scaffold is of great potential in industrial enzymatic catalysis, which can enhance the stability of enzymes thus expanding their applications. Metal–organic frameworks (MOFs) are emerging as promising candidates for enzyme encapsulation due to their precise pore structure, ease of synthesis and good biocompatibility. Despite the fact that enzymes encapsulated in MOFs can obtain enhanced stability, there has been little discussion about the thermal stability of enzyme-MOF composites in solid state under extremely high temperatures. Herein, we fabricated the enzyme-MOF composites, CALB-ZIF-8, via a convenient coprecipitation method in aqueous solution, which exhibited good thermal stability at 180 °C. It was found that the activity of CALB encapsulated in ZIF-8 retained nearly ~80% after heating for 10 min at 180 °C. A finite element method was applied to investigate the heat transfer process within a ZIF-8 model, indicating that the air filled in cavities of ZIF-8 played a significant role in hindering the heat transfer and this may be an important reason for the outstanding thermal stability of CALB-ZIF-8 at 180 °C, which paves a new path for expanding the industrial application of enzyme-MOF composites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
0
审稿时长
11 weeks
期刊介绍: Chemistry—A European Journal is a truly international journal with top quality contributions (2017 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields.
期刊最新文献
Photodynamic Action of Synthetic Curcuminoids against Staphylococcus aureus: Experimental and Computational Evaluation Azidoindolines—From Synthesis to Application: A Review Correction: Bagchi et al. Effects of Carboxyl Functionalized CNT on Electrochemical Behaviour of Polyluminol-CNT Composites. Chemistry 2022, 4, 1561–1575 Phytochemistry, Anti-Tyrosinase, and Anti-Diabetes Studies of Extracts and Chemical Constituents of Dicerothamnus rhinocerotis Leaves Recent Advances in Applied Electrochemistry: A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1