基于TCNN的朝鲜语在线教学支持技术研究

Shunji Cui
{"title":"基于TCNN的朝鲜语在线教学支持技术研究","authors":"Shunji Cui","doi":"10.33851/jmis.2023.10.3.249","DOIUrl":null,"url":null,"abstract":"The emergence and development of multimedia forms provide technical support for online Korean language teaching. However, in many aspects, there are still many problems in online Korean teaching, such as noise interference, inaccurate translation, and unstable translation models. In this paper, we propose a Korean speech enhancement model based on temporal convolutional neural network and GRU neural network. We explore a Korean speech enhancement technology based on deep neural network, to make Korean speech teaching clearer and smoother, and to provide a robust support technology for online Korean teaching. First, we construct a temporal convolutional neural network to process and extract temporal feature in language data. Second, we introduce the sliding window mechanism and the maximum pooling structure to extract the feature in the speech time series data effectively and reduced the data scale. Third, we employ the Bi-GRU neural network and encoder-decoder for temporal data enhancement, which effectively avoids the problem that the hidden layer information cannot be effectively used in the traditional model, thereby improving the prediction accuracy and speed of speech data. The experimental outcomes demonstrate the effective evaluation performance of the method proposed in this paper.","PeriodicalId":477174,"journal":{"name":"Journal of multimedia information system","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Robust Online Korean Teaching Support Technology Based on TCNN\",\"authors\":\"Shunji Cui\",\"doi\":\"10.33851/jmis.2023.10.3.249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emergence and development of multimedia forms provide technical support for online Korean language teaching. However, in many aspects, there are still many problems in online Korean teaching, such as noise interference, inaccurate translation, and unstable translation models. In this paper, we propose a Korean speech enhancement model based on temporal convolutional neural network and GRU neural network. We explore a Korean speech enhancement technology based on deep neural network, to make Korean speech teaching clearer and smoother, and to provide a robust support technology for online Korean teaching. First, we construct a temporal convolutional neural network to process and extract temporal feature in language data. Second, we introduce the sliding window mechanism and the maximum pooling structure to extract the feature in the speech time series data effectively and reduced the data scale. Third, we employ the Bi-GRU neural network and encoder-decoder for temporal data enhancement, which effectively avoids the problem that the hidden layer information cannot be effectively used in the traditional model, thereby improving the prediction accuracy and speed of speech data. The experimental outcomes demonstrate the effective evaluation performance of the method proposed in this paper.\",\"PeriodicalId\":477174,\"journal\":{\"name\":\"Journal of multimedia information system\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of multimedia information system\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33851/jmis.2023.10.3.249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of multimedia information system","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33851/jmis.2023.10.3.249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多媒体形式的出现和发展为网络韩语教学提供了技术支持。但是在很多方面,在线韩语教学还存在着噪音干扰、翻译不准确、翻译模式不稳定等问题。本文提出了一种基于时间卷积神经网络和GRU神经网络的韩语语音增强模型。我们探索了一种基于深度神经网络的韩语语音增强技术,使韩语语音教学更加清晰流畅,为在线韩语教学提供强大的支持技术。首先,我们构建了一个时间卷积神经网络来处理和提取语言数据中的时间特征。其次,引入滑动窗口机制和最大池化结构,有效提取语音时间序列数据中的特征,减小数据规模;第三,采用Bi-GRU神经网络和编码器对数据进行时序增强,有效避免了传统模型无法有效利用隐藏层信息的问题,从而提高了语音数据的预测精度和速度。实验结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Robust Online Korean Teaching Support Technology Based on TCNN
The emergence and development of multimedia forms provide technical support for online Korean language teaching. However, in many aspects, there are still many problems in online Korean teaching, such as noise interference, inaccurate translation, and unstable translation models. In this paper, we propose a Korean speech enhancement model based on temporal convolutional neural network and GRU neural network. We explore a Korean speech enhancement technology based on deep neural network, to make Korean speech teaching clearer and smoother, and to provide a robust support technology for online Korean teaching. First, we construct a temporal convolutional neural network to process and extract temporal feature in language data. Second, we introduce the sliding window mechanism and the maximum pooling structure to extract the feature in the speech time series data effectively and reduced the data scale. Third, we employ the Bi-GRU neural network and encoder-decoder for temporal data enhancement, which effectively avoids the problem that the hidden layer information cannot be effectively used in the traditional model, thereby improving the prediction accuracy and speed of speech data. The experimental outcomes demonstrate the effective evaluation performance of the method proposed in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sustainable Development of Diversified Teaching Mode from Ecological Perspective: A Case Study on Metaverse-Based Landscape Oil Painting Course A Method for Detecting Lightweight Optical Remote Sensing Images Using Improved Yolov5n A Robust Online Korean Teaching Support Technology Based on TCNN Decision-Making for Multi-View Single Object Detection with Graph Convolutional Networks Failure Analysis of Vital Sign Monitoring System in Digital Healthcare with FTA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1