{"title":"导电金属-有机框架电化学储能与转换研究进展与展望","authors":"Minggui Li, Guangxun Zhang, Yuxin Shi, Huijie Zhou, Yongcai Zhang, Huan Pang","doi":"10.3390/chemistry5040161","DOIUrl":null,"url":null,"abstract":"The metal–organic framework (MOF) is a kind of porous material with lattice materials. Due to its large surface area and structural diversity, it has made great progress in the fields of batteries, capacitors, electrocatalysis, etc. Conductive MOF (c-MOF) increases the conductivity based on the original advantages of the MOF, which is more suitable for the development of batteries, capacitors, electrocatalysis, and other fields. This review summarizes the preparation of c-MOF and the research progress of conductive MOFs in the field of electrochemical energy storage and conversion.","PeriodicalId":9850,"journal":{"name":"Chemistry","volume":"39 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Progress and Perspectives of Conducting Metal–Organic Frameworks for Electrochemical Energy Storage and Conversion\",\"authors\":\"Minggui Li, Guangxun Zhang, Yuxin Shi, Huijie Zhou, Yongcai Zhang, Huan Pang\",\"doi\":\"10.3390/chemistry5040161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The metal–organic framework (MOF) is a kind of porous material with lattice materials. Due to its large surface area and structural diversity, it has made great progress in the fields of batteries, capacitors, electrocatalysis, etc. Conductive MOF (c-MOF) increases the conductivity based on the original advantages of the MOF, which is more suitable for the development of batteries, capacitors, electrocatalysis, and other fields. This review summarizes the preparation of c-MOF and the research progress of conductive MOFs in the field of electrochemical energy storage and conversion.\",\"PeriodicalId\":9850,\"journal\":{\"name\":\"Chemistry\",\"volume\":\"39 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/chemistry5040161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/chemistry5040161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
Progress and Perspectives of Conducting Metal–Organic Frameworks for Electrochemical Energy Storage and Conversion
The metal–organic framework (MOF) is a kind of porous material with lattice materials. Due to its large surface area and structural diversity, it has made great progress in the fields of batteries, capacitors, electrocatalysis, etc. Conductive MOF (c-MOF) increases the conductivity based on the original advantages of the MOF, which is more suitable for the development of batteries, capacitors, electrocatalysis, and other fields. This review summarizes the preparation of c-MOF and the research progress of conductive MOFs in the field of electrochemical energy storage and conversion.
期刊介绍:
Chemistry—A European Journal is a truly international journal with top quality contributions (2017 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields.