{"title":"具有精确条件的概率规划","authors":"Dario Stein, Sam Staton","doi":"10.1145/3632170","DOIUrl":null,"url":null,"abstract":"We spell out the paradigm of exact conditioning as an intuitive and powerful way of conditioning on observations in probabilistic programs. This is contrasted with likelihood-based scoring known from languages such as Stan . We study exact conditioning in the cases of discrete and Gaussian probability, presenting prototypical languages for each case and giving semantics to them. We make use of categorical probability (namely Markov and CD categories) to give a general account of exact conditioning which avoids limits and measure theory, instead focusing on restructuring dataflow and program equations. The correspondence between such categories and a class of programming languages is made precise by defining the internal language of a CD category.","PeriodicalId":50022,"journal":{"name":"Journal of the ACM","volume":"13 5","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probabilistic Programming with Exact Conditions\",\"authors\":\"Dario Stein, Sam Staton\",\"doi\":\"10.1145/3632170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We spell out the paradigm of exact conditioning as an intuitive and powerful way of conditioning on observations in probabilistic programs. This is contrasted with likelihood-based scoring known from languages such as Stan . We study exact conditioning in the cases of discrete and Gaussian probability, presenting prototypical languages for each case and giving semantics to them. We make use of categorical probability (namely Markov and CD categories) to give a general account of exact conditioning which avoids limits and measure theory, instead focusing on restructuring dataflow and program equations. The correspondence between such categories and a class of programming languages is made precise by defining the internal language of a CD category.\",\"PeriodicalId\":50022,\"journal\":{\"name\":\"Journal of the ACM\",\"volume\":\"13 5\",\"pages\":\"0\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the ACM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3632170\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the ACM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3632170","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
We spell out the paradigm of exact conditioning as an intuitive and powerful way of conditioning on observations in probabilistic programs. This is contrasted with likelihood-based scoring known from languages such as Stan . We study exact conditioning in the cases of discrete and Gaussian probability, presenting prototypical languages for each case and giving semantics to them. We make use of categorical probability (namely Markov and CD categories) to give a general account of exact conditioning which avoids limits and measure theory, instead focusing on restructuring dataflow and program equations. The correspondence between such categories and a class of programming languages is made precise by defining the internal language of a CD category.
期刊介绍:
The best indicator of the scope of the journal is provided by the areas covered by its Editorial Board. These areas change from time to time, as the field evolves. The following areas are currently covered by a member of the Editorial Board: Algorithms and Combinatorial Optimization; Algorithms and Data Structures; Algorithms, Combinatorial Optimization, and Games; Artificial Intelligence; Complexity Theory; Computational Biology; Computational Geometry; Computer Graphics and Computer Vision; Computer-Aided Verification; Cryptography and Security; Cyber-Physical, Embedded, and Real-Time Systems; Database Systems and Theory; Distributed Computing; Economics and Computation; Information Theory; Logic and Computation; Logic, Algorithms, and Complexity; Machine Learning and Computational Learning Theory; Networking; Parallel Computing and Architecture; Programming Languages; Quantum Computing; Randomized Algorithms and Probabilistic Analysis of Algorithms; Scientific Computing and High Performance Computing; Software Engineering; Web Algorithms and Data Mining