{"title":"将动态边界条件作为边界退化问题的奇异极限的热方程","authors":"Yoshikazu Giga, Michał Łasica, Piotr Rybka","doi":"10.3233/asy-231862","DOIUrl":null,"url":null,"abstract":"We derive the dynamic boundary condition for the heat equation as a limit of boundary layer problems. We study convergence of their weak and strong solutions as the width of the layer tends to zero. We also discuss Γ-convergence of the functionals generating these flows. Our analysis of strong solutions depends on a new version of the Reilly identity.","PeriodicalId":55438,"journal":{"name":"Asymptotic Analysis","volume":"78 2","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The heat equation with the dynamic boundary condition as a singular limit of problems degenerating at the boundary\",\"authors\":\"Yoshikazu Giga, Michał Łasica, Piotr Rybka\",\"doi\":\"10.3233/asy-231862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive the dynamic boundary condition for the heat equation as a limit of boundary layer problems. We study convergence of their weak and strong solutions as the width of the layer tends to zero. We also discuss Γ-convergence of the functionals generating these flows. Our analysis of strong solutions depends on a new version of the Reilly identity.\",\"PeriodicalId\":55438,\"journal\":{\"name\":\"Asymptotic Analysis\",\"volume\":\"78 2\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asymptotic Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/asy-231862\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptotic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/asy-231862","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
The heat equation with the dynamic boundary condition as a singular limit of problems degenerating at the boundary
We derive the dynamic boundary condition for the heat equation as a limit of boundary layer problems. We study convergence of their weak and strong solutions as the width of the layer tends to zero. We also discuss Γ-convergence of the functionals generating these flows. Our analysis of strong solutions depends on a new version of the Reilly identity.
期刊介绍:
The journal Asymptotic Analysis fulfills a twofold function. It aims at publishing original mathematical results in the asymptotic theory of problems affected by the presence of small or large parameters on the one hand, and at giving specific indications of their possible applications to different fields of natural sciences on the other hand. Asymptotic Analysis thus provides mathematicians with a concentrated source of newly acquired information which they may need in the analysis of asymptotic problems.