钙钛矿基燃料电极材料Sr2Fe2-XMoxO6-δ - GDC的长期稳定性

Stephanie E. Wolf, Vaibhav Vibhu, Carla L. Coll, Niklas Eyckeler, Izaak C. Vinke, Rudiger-A Eichel, L.G.J. (Bert) de Haart
{"title":"钙钛矿基燃料电极材料Sr2Fe2-XMoxO6-δ - GDC的长期稳定性","authors":"Stephanie E. Wolf, Vaibhav Vibhu, Carla L. Coll, Niklas Eyckeler, Izaak C. Vinke, Rudiger-A Eichel, L.G.J. (Bert) de Haart","doi":"10.1149/ma2023-0154329mtgabs","DOIUrl":null,"url":null,"abstract":"Solid oxide electrolysis cells (SOECs) have proven to be a highly efficient key technology to produce valuable gases (H 2 , CO). SOECs utilize renewably generated electricity at temperatures between 600 - 900 °C, thereby providing a carbon-neutral method for energy storage. However, the successful industrial implementation of this technology requires long-term stability of all system components and is mainly delayed by the degradation of the electrodes over time. The state-of-the-art Ni-YSZ fuel electrode has been extensively studied and exhibits severe performance loss due to Ni particle agglomeration and Ni migration away from the active sites at the electrolyte/electrode interface under real operating conditions [1]. To mitigate this issue, we have investigated the Ni-free perovskite Sr 2 Fe 2-x Mo x O 6-δ + 30% GDC as fuel electrode material. As mixed ionic and electronic (MIEC) perovskite structured oxides, these materials have shown excellent short-term redox stability in oxidizing and reducing atmospheres in addition to high conductivity and outstanding coking resistance [2]. These characteristics meet exactly the targeted requirements for new solid oxide electrolyzer materials. We have compared the long-term degradation of an SFM fuel electrode to an electrode made of SFM-GDC (Figure 1). The degradation was less severe for the mixed electrode of SFM-GDC. Impedance and post-test SEM-EDX analysis clarified the main degradation mechanisms of SFM as well as SFM-GDC in steam and CO 2 electrolysis. The tested button cells showed demixing of the SFM phase and particle aggomeration in the fuel electrode. [1] S. E. Wolf, V. Vibhu, E. Tröster, I. C. Vinke, R.-A. Eichel and L. G. J. de Haart, Energies , 15 (15), 5449 (2022). [2] L. Bernadet, C. Moncasi, M. Torrell and A. Tarancón, Int. J. Hydrog. Energy , 45 (28), 14208–14217 (2020). Figure 1","PeriodicalId":11461,"journal":{"name":"ECS Meeting Abstracts","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-Term Stability of Perovskite-Based Fuel Electrode Material Sr<sub>2</sub>Fe<sub>2-X</sub>Mo<sub>x</sub>O<sub>6-δ</sub> – GDC for Enhanced High-Temperature Steam and CO<sub>2</sub> Electrolysis\",\"authors\":\"Stephanie E. Wolf, Vaibhav Vibhu, Carla L. Coll, Niklas Eyckeler, Izaak C. Vinke, Rudiger-A Eichel, L.G.J. (Bert) de Haart\",\"doi\":\"10.1149/ma2023-0154329mtgabs\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solid oxide electrolysis cells (SOECs) have proven to be a highly efficient key technology to produce valuable gases (H 2 , CO). SOECs utilize renewably generated electricity at temperatures between 600 - 900 °C, thereby providing a carbon-neutral method for energy storage. However, the successful industrial implementation of this technology requires long-term stability of all system components and is mainly delayed by the degradation of the electrodes over time. The state-of-the-art Ni-YSZ fuel electrode has been extensively studied and exhibits severe performance loss due to Ni particle agglomeration and Ni migration away from the active sites at the electrolyte/electrode interface under real operating conditions [1]. To mitigate this issue, we have investigated the Ni-free perovskite Sr 2 Fe 2-x Mo x O 6-δ + 30% GDC as fuel electrode material. As mixed ionic and electronic (MIEC) perovskite structured oxides, these materials have shown excellent short-term redox stability in oxidizing and reducing atmospheres in addition to high conductivity and outstanding coking resistance [2]. These characteristics meet exactly the targeted requirements for new solid oxide electrolyzer materials. We have compared the long-term degradation of an SFM fuel electrode to an electrode made of SFM-GDC (Figure 1). The degradation was less severe for the mixed electrode of SFM-GDC. Impedance and post-test SEM-EDX analysis clarified the main degradation mechanisms of SFM as well as SFM-GDC in steam and CO 2 electrolysis. The tested button cells showed demixing of the SFM phase and particle aggomeration in the fuel electrode. [1] S. E. Wolf, V. Vibhu, E. Tröster, I. C. Vinke, R.-A. Eichel and L. G. J. de Haart, Energies , 15 (15), 5449 (2022). [2] L. Bernadet, C. Moncasi, M. Torrell and A. Tarancón, Int. J. Hydrog. Energy , 45 (28), 14208–14217 (2020). Figure 1\",\"PeriodicalId\":11461,\"journal\":{\"name\":\"ECS Meeting Abstracts\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ECS Meeting Abstracts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1149/ma2023-0154329mtgabs\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Meeting Abstracts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/ma2023-0154329mtgabs","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

固体氧化物电解电池(SOECs)已被证明是生产有价值气体(h2, CO)的高效关键技术。soec在600 - 900°C的温度下利用可再生能源发电,从而提供了一种碳中和的储能方法。然而,该技术的成功工业实施需要所有系统组件的长期稳定性,并且主要是由于电极随时间的退化而延迟。最先进的Ni- ysz燃料电极已经得到了广泛的研究,在实际操作条件下,由于Ni颗粒聚集和Ni从电解质/电极界面的活性位点迁移而导致严重的性能损失[1]。为了解决这个问题,我们研究了无ni钙钛矿Sr 2 Fe 2-x Mo x o6 -δ + 30% GDC作为燃料电极材料。作为混合离子和电子(MIEC)钙钛矿结构氧化物,这些材料除了具有高导电性和优异的抗焦化性能外,还在氧化和还原气氛中表现出优异的短期氧化还原稳定性。这些特性完全符合新型固体氧化物电解槽材料的目标要求。我们比较了SFM燃料电极和SFM- gdc制成的电极的长期降解情况(图1)。SFM- gdc混合电极的降解程度较轻。阻抗和测试后SEM-EDX分析明确了SFM以及SFM- gdc在蒸汽和CO 2电解中的主要降解机制。测试的纽扣电池显示燃料电极中SFM相的脱混和颗粒聚集。[1] S. E. Wolf, V. Vibhu, E. Tröster, I. C. Vinke, r . a。Eichel和L. G. J. de Haart,能源,15(15),5449(2022)。b[2] L. Bernadet, C. Moncasi, M. Torrell和A. Tarancón, Int。j . Hydrog。能源学报,45(28),14208-14217(2020)。图1
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Long-Term Stability of Perovskite-Based Fuel Electrode Material Sr2Fe2-XMoxO6-δ – GDC for Enhanced High-Temperature Steam and CO2 Electrolysis
Solid oxide electrolysis cells (SOECs) have proven to be a highly efficient key technology to produce valuable gases (H 2 , CO). SOECs utilize renewably generated electricity at temperatures between 600 - 900 °C, thereby providing a carbon-neutral method for energy storage. However, the successful industrial implementation of this technology requires long-term stability of all system components and is mainly delayed by the degradation of the electrodes over time. The state-of-the-art Ni-YSZ fuel electrode has been extensively studied and exhibits severe performance loss due to Ni particle agglomeration and Ni migration away from the active sites at the electrolyte/electrode interface under real operating conditions [1]. To mitigate this issue, we have investigated the Ni-free perovskite Sr 2 Fe 2-x Mo x O 6-δ + 30% GDC as fuel electrode material. As mixed ionic and electronic (MIEC) perovskite structured oxides, these materials have shown excellent short-term redox stability in oxidizing and reducing atmospheres in addition to high conductivity and outstanding coking resistance [2]. These characteristics meet exactly the targeted requirements for new solid oxide electrolyzer materials. We have compared the long-term degradation of an SFM fuel electrode to an electrode made of SFM-GDC (Figure 1). The degradation was less severe for the mixed electrode of SFM-GDC. Impedance and post-test SEM-EDX analysis clarified the main degradation mechanisms of SFM as well as SFM-GDC in steam and CO 2 electrolysis. The tested button cells showed demixing of the SFM phase and particle aggomeration in the fuel electrode. [1] S. E. Wolf, V. Vibhu, E. Tröster, I. C. Vinke, R.-A. Eichel and L. G. J. de Haart, Energies , 15 (15), 5449 (2022). [2] L. Bernadet, C. Moncasi, M. Torrell and A. Tarancón, Int. J. Hydrog. Energy , 45 (28), 14208–14217 (2020). Figure 1
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Redox Tolerant Solid Oxide Electrolysis Cathode for CO2 and Steam (Keynote) Releasing the Bubbles: Efficient Phase Separation in (Photo-)Electrochemical Devices in Microgravity Environment Phase Stability of SrTi1-XFexO3- δ Under Solid Oxide Cell Fuel-Electrode Conditions: Implications for Related Exsolution Electrode Materials Long-Term Stability of Perovskite-Based Fuel Electrode Material Sr2Fe2-XMoxO6-δ – GDC for Enhanced High-Temperature Steam and CO2 Electrolysis GC:BiFE As an Useful Tool for the Quantification of Health Harmful Organic Compounds in Artisanal Spiritus Beverages Via ADSV
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1