{"title":"(主题演讲)火星上的电化学-两年的MOXIE(火星氧气ISRU实验)操作在红色星球表面产生氧气","authors":"Jeffrey A. Hoffman","doi":"10.1149/ma2023-01562739mtgabs","DOIUrl":null,"url":null,"abstract":"By the time of the 243rd ECS, NASA’s Mars2020 Perseverance rover will have spent over two Earth years on the surface of Mars, during which time the MOXIE experiment ( M ars OX ygen I SRU E xperiment) will have produced oxygen at night and in the day during both the annual maximum and minimum atmospheric density periods, as well as at many other times during the year. MOXIE is the first demonstration of the use of indigenous resources (ISRU = In Situ Resource Utilization) on the surface of another planet. This talk will explain how MOXIE works and will present a summary of what MOXIE has accomplished, how its performance on Mars has changed with time, and plans for the future. The paper will also present results from an optimization study of a human-scale MOXIE-type system capable of providing the oxidizer for a 6–person Mars Ascent Vehicle. As an experiment carried inside the rover, MOXIE had to satisfy many constraints that would not apply to an independent, full-scale system. Other potential oxygen-producing technologies should be compared to the optimized human-scale system results summarized in this paper rather than to a simple linear scaling of the mass, power consumption, and oxygen production rate of MOXIE.","PeriodicalId":11461,"journal":{"name":"ECS Meeting Abstracts","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"(Keynote) Electrochemistry on Mars – Two Years of MOXIE (Mars Oxygen ISRU Experiment) Operations Producing Oxygen on the Surface of the Red Planet\",\"authors\":\"Jeffrey A. Hoffman\",\"doi\":\"10.1149/ma2023-01562739mtgabs\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By the time of the 243rd ECS, NASA’s Mars2020 Perseverance rover will have spent over two Earth years on the surface of Mars, during which time the MOXIE experiment ( M ars OX ygen I SRU E xperiment) will have produced oxygen at night and in the day during both the annual maximum and minimum atmospheric density periods, as well as at many other times during the year. MOXIE is the first demonstration of the use of indigenous resources (ISRU = In Situ Resource Utilization) on the surface of another planet. This talk will explain how MOXIE works and will present a summary of what MOXIE has accomplished, how its performance on Mars has changed with time, and plans for the future. The paper will also present results from an optimization study of a human-scale MOXIE-type system capable of providing the oxidizer for a 6–person Mars Ascent Vehicle. As an experiment carried inside the rover, MOXIE had to satisfy many constraints that would not apply to an independent, full-scale system. Other potential oxygen-producing technologies should be compared to the optimized human-scale system results summarized in this paper rather than to a simple linear scaling of the mass, power consumption, and oxygen production rate of MOXIE.\",\"PeriodicalId\":11461,\"journal\":{\"name\":\"ECS Meeting Abstracts\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ECS Meeting Abstracts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1149/ma2023-01562739mtgabs\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Meeting Abstracts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/ma2023-01562739mtgabs","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
(Keynote) Electrochemistry on Mars – Two Years of MOXIE (Mars Oxygen ISRU Experiment) Operations Producing Oxygen on the Surface of the Red Planet
By the time of the 243rd ECS, NASA’s Mars2020 Perseverance rover will have spent over two Earth years on the surface of Mars, during which time the MOXIE experiment ( M ars OX ygen I SRU E xperiment) will have produced oxygen at night and in the day during both the annual maximum and minimum atmospheric density periods, as well as at many other times during the year. MOXIE is the first demonstration of the use of indigenous resources (ISRU = In Situ Resource Utilization) on the surface of another planet. This talk will explain how MOXIE works and will present a summary of what MOXIE has accomplished, how its performance on Mars has changed with time, and plans for the future. The paper will also present results from an optimization study of a human-scale MOXIE-type system capable of providing the oxidizer for a 6–person Mars Ascent Vehicle. As an experiment carried inside the rover, MOXIE had to satisfy many constraints that would not apply to an independent, full-scale system. Other potential oxygen-producing technologies should be compared to the optimized human-scale system results summarized in this paper rather than to a simple linear scaling of the mass, power consumption, and oxygen production rate of MOXIE.