Rafael Wagner, Roberto D. Baldijão, Alisson Tezzin, Bárbara Amaral
{"title":"利用资源理论的观点来见证和设计准备和测量场景的量子广义情境","authors":"Rafael Wagner, Roberto D. Baldijão, Alisson Tezzin, Bárbara Amaral","doi":"10.1088/1751-8121/ad0bcc","DOIUrl":null,"url":null,"abstract":"Abstract We employ the resource theory of generalized contextuality as a tool for analyzing the structure of prepare-and-measure scenarios. We argue that this framework simplifies proofs of quantum contextuality in complex scenarios and strengthens existing arguments regarding robustness of experimental implementations. As a case study, we demonstrate quantum contextuality associated with any nontrivial noncontextuality inequality for a class of useful scenarios by noticing a connection between the resource theory and measurement simulability. Additionally, we expose a formal composition rule that allows engineering complex scenarios from simpler ones. This approach provides insights into the noncontextual polytope structure for complex scenarios and facilitates the identification of possible quantum violations of noncontextuality inequalities.
","PeriodicalId":16785,"journal":{"name":"Journal of Physics A","volume":"84 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Using a resource theoretic perspective to witness and engineer quantum generalized contextuality for prepare-and-measure scenarios\",\"authors\":\"Rafael Wagner, Roberto D. Baldijão, Alisson Tezzin, Bárbara Amaral\",\"doi\":\"10.1088/1751-8121/ad0bcc\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We employ the resource theory of generalized contextuality as a tool for analyzing the structure of prepare-and-measure scenarios. We argue that this framework simplifies proofs of quantum contextuality in complex scenarios and strengthens existing arguments regarding robustness of experimental implementations. As a case study, we demonstrate quantum contextuality associated with any nontrivial noncontextuality inequality for a class of useful scenarios by noticing a connection between the resource theory and measurement simulability. Additionally, we expose a formal composition rule that allows engineering complex scenarios from simpler ones. This approach provides insights into the noncontextual polytope structure for complex scenarios and facilitates the identification of possible quantum violations of noncontextuality inequalities.
\",\"PeriodicalId\":16785,\"journal\":{\"name\":\"Journal of Physics A\",\"volume\":\"84 11\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/ad0bcc\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad0bcc","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using a resource theoretic perspective to witness and engineer quantum generalized contextuality for prepare-and-measure scenarios
Abstract We employ the resource theory of generalized contextuality as a tool for analyzing the structure of prepare-and-measure scenarios. We argue that this framework simplifies proofs of quantum contextuality in complex scenarios and strengthens existing arguments regarding robustness of experimental implementations. As a case study, we demonstrate quantum contextuality associated with any nontrivial noncontextuality inequality for a class of useful scenarios by noticing a connection between the resource theory and measurement simulability. Additionally, we expose a formal composition rule that allows engineering complex scenarios from simpler ones. This approach provides insights into the noncontextual polytope structure for complex scenarios and facilitates the identification of possible quantum violations of noncontextuality inequalities.