{"title":"(特邀)利用磁流体动力学机制实现稳定高效的微重力电解","authors":"Álvaro Romero-Calvo, Katharina Brinkert","doi":"10.1149/ma2023-01562718mtgabs","DOIUrl":null,"url":null,"abstract":"Water electrolysis is the fundamental chemical process for oxygen and hydrogen production in space. It is widely employed in modern environmental control and life support systems, propulsion technologies, and high-density energy storage devices. Furthermore, future interplanetary missions are likely to employ water as a commodity acquired and processed by In Situ Resource Utilization (ISRU) methodologies to produce propellants, thereby reducing vehicle launch mass. The absence of buoyancy results in major technical challenges for the operation of electrolytic cells in low gravity. The need to detach and collect oxygen and hydrogen bubbles has been traditionally addressed by means of forced water recirculation loops. However, this leads to complex, inefficient, and unreliable liquid management devices composed of multiple elements and moving parts. Two distinct magnetohydrodynamic (MHD) mechanisms may instead be employed to induce phase separation: diamagnetic, and Lorentz forces. The former arises in the presence of strong, inhomogeneous magnetic fields and results in a magnetic buoyancy effect. The latter is a consequence of the imposition of a magnetic field to the current generated between two electrodes. Both approaches can potentially lead to a new generation of electrolytic cells with minimum or no moving parts, hence enabling the human deep space operations with minimum mass and power penalties. Dedicated microgravity experiments are required to study these novel magnetically enhanced electrolysis concepts. This presentation introduces the fundamentals of both methods and discusses the experimental design and results from several experimental campaigns at ZARM’s drop tower and Blue Origin’s New Shepard. The performance of representative electrolytic cells subject to different MHD regimes is addressed from an electrochemical and fluid dynamic perspectives. It is demonstrated that the MHD force effectively detaches and collects gas bubbles in microgravity while increasing the current density and improving the stability of the electrolytic cell. Ultimately, this opens the door for the development of highly-efficient space electrolytic cells with applications to human and robotic space exploration.","PeriodicalId":11461,"journal":{"name":"ECS Meeting Abstracts","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"(Invited) Leveraging Magnetohydrodynamic Mechanisms for Stable and Efficient Microgravity Electrolysis\",\"authors\":\"Álvaro Romero-Calvo, Katharina Brinkert\",\"doi\":\"10.1149/ma2023-01562718mtgabs\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Water electrolysis is the fundamental chemical process for oxygen and hydrogen production in space. It is widely employed in modern environmental control and life support systems, propulsion technologies, and high-density energy storage devices. Furthermore, future interplanetary missions are likely to employ water as a commodity acquired and processed by In Situ Resource Utilization (ISRU) methodologies to produce propellants, thereby reducing vehicle launch mass. The absence of buoyancy results in major technical challenges for the operation of electrolytic cells in low gravity. The need to detach and collect oxygen and hydrogen bubbles has been traditionally addressed by means of forced water recirculation loops. However, this leads to complex, inefficient, and unreliable liquid management devices composed of multiple elements and moving parts. Two distinct magnetohydrodynamic (MHD) mechanisms may instead be employed to induce phase separation: diamagnetic, and Lorentz forces. The former arises in the presence of strong, inhomogeneous magnetic fields and results in a magnetic buoyancy effect. The latter is a consequence of the imposition of a magnetic field to the current generated between two electrodes. Both approaches can potentially lead to a new generation of electrolytic cells with minimum or no moving parts, hence enabling the human deep space operations with minimum mass and power penalties. Dedicated microgravity experiments are required to study these novel magnetically enhanced electrolysis concepts. This presentation introduces the fundamentals of both methods and discusses the experimental design and results from several experimental campaigns at ZARM’s drop tower and Blue Origin’s New Shepard. The performance of representative electrolytic cells subject to different MHD regimes is addressed from an electrochemical and fluid dynamic perspectives. It is demonstrated that the MHD force effectively detaches and collects gas bubbles in microgravity while increasing the current density and improving the stability of the electrolytic cell. Ultimately, this opens the door for the development of highly-efficient space electrolytic cells with applications to human and robotic space exploration.\",\"PeriodicalId\":11461,\"journal\":{\"name\":\"ECS Meeting Abstracts\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ECS Meeting Abstracts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1149/ma2023-01562718mtgabs\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Meeting Abstracts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/ma2023-01562718mtgabs","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
(Invited) Leveraging Magnetohydrodynamic Mechanisms for Stable and Efficient Microgravity Electrolysis
Water electrolysis is the fundamental chemical process for oxygen and hydrogen production in space. It is widely employed in modern environmental control and life support systems, propulsion technologies, and high-density energy storage devices. Furthermore, future interplanetary missions are likely to employ water as a commodity acquired and processed by In Situ Resource Utilization (ISRU) methodologies to produce propellants, thereby reducing vehicle launch mass. The absence of buoyancy results in major technical challenges for the operation of electrolytic cells in low gravity. The need to detach and collect oxygen and hydrogen bubbles has been traditionally addressed by means of forced water recirculation loops. However, this leads to complex, inefficient, and unreliable liquid management devices composed of multiple elements and moving parts. Two distinct magnetohydrodynamic (MHD) mechanisms may instead be employed to induce phase separation: diamagnetic, and Lorentz forces. The former arises in the presence of strong, inhomogeneous magnetic fields and results in a magnetic buoyancy effect. The latter is a consequence of the imposition of a magnetic field to the current generated between two electrodes. Both approaches can potentially lead to a new generation of electrolytic cells with minimum or no moving parts, hence enabling the human deep space operations with minimum mass and power penalties. Dedicated microgravity experiments are required to study these novel magnetically enhanced electrolysis concepts. This presentation introduces the fundamentals of both methods and discusses the experimental design and results from several experimental campaigns at ZARM’s drop tower and Blue Origin’s New Shepard. The performance of representative electrolytic cells subject to different MHD regimes is addressed from an electrochemical and fluid dynamic perspectives. It is demonstrated that the MHD force effectively detaches and collects gas bubbles in microgravity while increasing the current density and improving the stability of the electrolytic cell. Ultimately, this opens the door for the development of highly-efficient space electrolytic cells with applications to human and robotic space exploration.