{"title":"质子传导固体氧化物电解电池(p-SOEC)在爱达荷国家实验室的进展","authors":"Dong Ding","doi":"10.1149/ma2023-0154203mtgabs","DOIUrl":null,"url":null,"abstract":"Proton Conducting Solid Oxide Electrolysis Cells (p-SOEC) is an emerging and attractive technology for hydrogen production through water electrolysis at intermediate temperatures. Economically competitive p-SOEC systems have distinct advantages over conventional oxygen-ion conducting ceramic electrochemical cells, but further technology development and widespread market acceptance will require continuous innovation of materials and structures in order to improve cell performance, enhance system lifetime and reduce cost. Herein, we report the advancement of p-SOEC with materials R&D, interface engineering, as well as cell fabrication and manufacturing in INL. We highlight how DOE support through HydroGEN accelerates move up the technology readiness level.","PeriodicalId":11461,"journal":{"name":"ECS Meeting Abstracts","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancement of Proton Conducting Solid Oxide Electrolysis Cells (p-SOEC) for Hydrogen Production at Idaho National Laboratory\",\"authors\":\"Dong Ding\",\"doi\":\"10.1149/ma2023-0154203mtgabs\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proton Conducting Solid Oxide Electrolysis Cells (p-SOEC) is an emerging and attractive technology for hydrogen production through water electrolysis at intermediate temperatures. Economically competitive p-SOEC systems have distinct advantages over conventional oxygen-ion conducting ceramic electrochemical cells, but further technology development and widespread market acceptance will require continuous innovation of materials and structures in order to improve cell performance, enhance system lifetime and reduce cost. Herein, we report the advancement of p-SOEC with materials R&D, interface engineering, as well as cell fabrication and manufacturing in INL. We highlight how DOE support through HydroGEN accelerates move up the technology readiness level.\",\"PeriodicalId\":11461,\"journal\":{\"name\":\"ECS Meeting Abstracts\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ECS Meeting Abstracts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1149/ma2023-0154203mtgabs\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Meeting Abstracts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/ma2023-0154203mtgabs","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Advancement of Proton Conducting Solid Oxide Electrolysis Cells (p-SOEC) for Hydrogen Production at Idaho National Laboratory
Proton Conducting Solid Oxide Electrolysis Cells (p-SOEC) is an emerging and attractive technology for hydrogen production through water electrolysis at intermediate temperatures. Economically competitive p-SOEC systems have distinct advantages over conventional oxygen-ion conducting ceramic electrochemical cells, but further technology development and widespread market acceptance will require continuous innovation of materials and structures in order to improve cell performance, enhance system lifetime and reduce cost. Herein, we report the advancement of p-SOEC with materials R&D, interface engineering, as well as cell fabrication and manufacturing in INL. We highlight how DOE support through HydroGEN accelerates move up the technology readiness level.